Neural network and logistic regression diagnostic prediction models for giant cell arteritis: development and validation

(original) (raw)

Purpose: To develop and validate neural network (NN) vs logistic regression (LR) diagnostic prediction models in patients with suspected giant cell arteritis (GCA). Design: Multicenter retrospective chart review. Methods: An audit of consecutive patients undergoing temporal artery biopsy (TABx) for suspected GCA was conducted at 14 international medical centers. The outcome variable was biopsy-proven GCA. The predictor variables were age, gender, headache, clinical temporal artery abnormality, jaw claudication, vision loss, diplopia, erythrocyte sedimentation rate, C-reactive protein, and platelet level. The data were divided into three groups to train, validate, and test the models. The NN model with the lowest false-negative rate was chosen. Internal and external validations were performed. Results: Of 1,833 patients who underwent TABx, there was complete information on 1,201 patients, 300 (25%) of whom had a positive TABx. On multivariable LR age, platelets, jaw claudication, vision loss, log C-reactive protein, log erythrocyte sedimentation rate, headache, and clinical temporal artery abnormality were statistically significant predictors of a positive TABx (P#0.05). The area under the receiver operating characteristic curve/Hosmer-Lemeshow P for LR was 0.867 (95% CI, 0.794, 0.917)/0.119 vs NN 0.860 (95% CI, 0.786, 0.911)/0.805, with no statistically significant difference of the area under the curves (P=0.316). The misclassification rate/false-negative rate of LR was 20.6%/47.5% vs 18.1%/30.5% for NN. Missing data analysis did not change the results. Conclusion: Statistical models can aid in the triage of patients with suspected GCA. Misclassification remains a concern, but cutoff values for 95% and 99% sensitivities are provided (https://goo.gl/THCnuU).