Preparation of high-potency, non-aggregating insulins using a novel sulfation procedure (original) (raw)
Related papers
Langmuir, 2013
Ternary interpolyelectrolyte complexes of insulin with biodegradable synthetic cationic polymer, poly(methylaminophosphazene) hydrochloride (PMAP), and dextran sulfate (DS) were investigated by means of turbidimetry, dynamic light scattering, phase analysis, and highsensitivity differential scanning calorimetry. Formation of ternary insoluble stoichiometric Insulin-PMAP-DS complexes was detected under conditions imitating the human gastric environment (pH 2, 0.15 M NaCl). A complete immobilization of insulin in the complexes was observed in a wide range of the reaction mixture compositions. The ternary complexes were shown to dissolve and dissociate under conditions imitating the human intestinal environment (pH 8.3, 0.15 M NaCl). The products of the complex dissociation were free insulin and soluble binary Insulin-PMAP complexes. The conformational stability of insulin in the soluble complexes of various compositions was investigated by high-sensitivity differential scanning calorimetry. The dependence of the excess denaturation free energy of insulin in these complexes on the PMAP content was obtained. The binding constants of the folded and unfolded forms of insulin to the PMAP polycation were estimated. Proteolysis of insulin involved in the insoluble ternary complexes by pepsin was investigated under physiological conditions. It was found that the complexes ensure an almost 100% protection of insulin against proteolytic degradation. The obtained results provide a perspective basis for development of oral insulin preparations.
Journal of Pharmaceutical Sciences, 2016
A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation properties. The dimer was formed by a covalent link between A21Asn and B29Lys. It was analyzed using static and dynamic light scattering and small-angle X-ray scattering to evaluate its self-association behavior. The tertiary structure was obtained using nuclear magnetic resonance and X-ray crystallography. The biological activity of HMWP was determined using 2 in vitro assays, and its influence on fibrillation was investigated using Thioflavin T assays. The dimer's tertiary structure was nearly identical to that of the noncovalent insulin dimer, and it was able to form hexamers in the presence of zinc. The dimer exhibited reduced propensity for self-association in the absence of zinc but significantly postponed the onset of fibrillation in insulin formulations. Consistent with its dimeric state, the tested species of HMWP showed little to no biological activity in the used assays. This study is the first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure similar to the noncovalent dimer and participated in hexamer assembly in the presence of zinc. In addition, increasing amounts of HMWP reduce the rate of insulin fibrillation.
Process and purification for manufacture of a modified insulin intended for oral delivery
Journal of Chromatography A, 2008
Oral delivery of insulin is convenient and physiologically desirable in the treatment of diabetes. However, this route of administration has presented substantial challenges as insulin is degraded enzymatically in the gut, resulting in low bioavailability. We have developed a conjugated insulin product (IN-105) that has high bioavailability and is currently undergoing clinical trials for the treatment of diabetes. A process for the manufacture of IN-105 was developed. Initially, recombinant human insulin was conjugated covalently with a monodisperse, short-chain methoxypolyethylene glycol derivative. The desired product, IN-105, was purified from its closely related species using RP-HPLC and cation exchange chromatography to a purity of 98.5%. The elution pool from cation exchange chromatography was crystallized and lyophilized into the dry active pharmaceutical ingredient.
An Overview on the Insulin Preparations and Devices
Indian Journal of Pharmaceutical Education and Research
Insulin preparations are the mainstay in the management of type 1 along with various type 2 diabetes. Available insulin preparations are either short-acting or long-acting or mixture to mimic the physiological insulin secretion and their doses need to be individualized. Attempting to imitate normal secretion of insulin can be valuable paradigm for understanding and providing effective therapy. This review provides an outline about the composition, use, route of administration, injection site, pharmacokinetics, storage and handling of various insulin preparations. The efficacy and safety of various insulin preparations for the management of diabetes mellitus are discussed. In addition, the use and application of various insulin devices to improve adherence and provide optimum delivery are elaborated. Indeed, the patient awareness and adherence on these issues is crucial to achieve good glycemic control.
A Review on Insulin Formulations for Diabetes Mellitus Therapy
International Journal of Research in Pharmaceutical Sciences
The insulin discovery during the past century is considered as the major breakout in the health sector. It is considered as lifesaving medication for T1DM and T2DM. In the advancement of peptide chemistry, pharmacology, cell signalling and structural biology insulin has played a central role. Natural human insulin secreted from pancreatic cells maintains the glucose levels in blood. Later on, for the treatment of diabetes mellitus external insulin was developed by various means. However, imitating same actions by natural insulin by external insulin was difficult. Various insulin analogues developed (rapid acting, short acting, long acting, intermediate acting) different blood glucose lowering action profiles. The physiological post-prandial insulin response is not adequately reproduced by the pharmacokinetic profile of rapid-acting insulin. Before the meals, lyspro and aspart, fast acting analogues can be injected which produce faster and substantial insulin peak. As it is difficult...
Insulin: evolution of insulin formulations and their application in clinical practice over 100 years
Acta Diabetologica
The first preparation of insulin extracted from a pancreas and made suitable for use in humans after purification was achieved 100 years ago in Toronto, an epoch-making achievement, which has ultimately provided a life-giving treatment for millions of people worldwide. The earliest animal-derived formulations were short-acting and contained many impurities that caused adverse reactions, thereby limiting their therapeutic potential. However, since then, insulin production and purification improved with enhanced technologies, along with a full understanding of the insulin molecule structure. The availability of radio-immunoassays contributed to the unravelling of the physiology of glucose homeostasis, ultimately leading to the adoption of rational models of insulin replacement. The introduction of recombinant DNA technologies has since resulted in the era of both rapid-and long-acting human insulin analogues administered via the subcutaneous route which better mimic the physiology of insulin secretion, leading to the modern basal-bolus regimen. These advances, in combination with improved education and technologies for glucose monitoring, enable people with diabetes to better meet individual glycaemic goals with a lower risk of hypoglycaemia. While the prevalence of diabetes continues to rise globally, it is important to recognise the scientific endeavour that has led to insulin remaining the cornerstone of diabetes management, on the centenary of its first successful use in humans.
Purpose To study the self-association states of insulin degludec and insulin aspart alone and combined in pharmaceutical formulation and under conditions simulating the subcutaneous depot. Methods Formulations were made of 0.6 mM degludec at 3 and 5 Zn/6 insulin monomers, and 0.6 mM aspart (2 Zn/6 insulin monomers). Self-association was assessed using size-exclusion chromatography (SEC) monitored by UV and orthogonal reverse-phase chromatography. Results Simulating pharmaceutical formulation, degludec eluted as dihexamers, whereas aspart eluted as hexamers and mono-mers. Combining degludec at low zinc with aspart increased dihexamer content, indicating hybrid hexamer formation. At high zinc concentration, however, there was no evidence of this. Simulating the subcutaneous depot by removing preservative, degludec eluted as multihexamers and aspart as monomers. Aspart was incorporated into the multihexamer structures when combined with degludec at low zinc, but there was no such interaction with high-zinc degludec. SEC using progressively diluted concentrations of phenol and m-cresol showed that dissocia-tion of aspart into monomers occurs before the formation of degludec multihexamers.
Characterisation of insulin analogues therapeutically available to patients
PloS one, 2018
The structure and function of clinical dosage insulin and its analogues were assessed. This included 'native insulins' (human recombinant, bovine, porcine), 'fast-acting analogues' (aspart, glulisine, lispro) and 'slow-acting analogues' (glargine, detemir, degludec). Analytical ultracentrifugation, both sedimentation velocity and equilibrium experiments, were employed to yield distributions of both molar mass and sedimentation coefficient of all nine insulins. Size exclusion chromatography, coupled to multi-angle light scattering, was also used to explore the function of these analogues. On ultracentrifugation analysis, the insulins under investigation were found to be in numerous conformational states, however the majority of insulins were present in a primarily hexameric conformation. This was true for all native insulins and two fast-acting analogues. However, glargine was present as a dimer, detemir was a multi-hexameric system, degludec was a dodecamer (...
International Journal of Pharmaceutics, 2014
The objective of this study is to elucidate the role of low-molecular weight biogenic agents, resembling dietary-derived products naturally occurring in the intestine, in the regulation of transformations of soluble aggregation-prone insulin into aggregates of higher order. In the course of model experiments, a striking potential of the amino acids L-arginine (Arg) and L-lysine (Lys) and a number of positively charged peptides to induce formation of heterogenic supramolecular structures of insulin was demonstrated under environment conditions where the protein aggregation in their absence was not observed. This phenomenon is assumed to be essential for elaboration of strategies of oral delivery of insulin to diabetic patients supplemented by controlling the pH values of the intestinal environment where the drug is released.
In vitro and in vivo evaluation of a novel oral insulin formulation
Acta Pharmacologica Sinica, 2006
Aim: To develop a stable self-emulsifying formulation for oral delivery of insulin. Methods: Caco-2 cell line and diabetic beagles were used as in vitro and in vivo models to study the absorption mechanism and the hypoglycemic efficacy of the formulation. In addition, various physicochemical parameters of the formulation such as droplet size, insulin encapsulation efficiency and stability were evaluated. Results: This formulation enabled changes in barrier properties of Caco-2 monolayers, as referred by transepithelial electrical resistance (TEER) and apparent permeability coefficients (P app) of the paracellular marker ranitidine (20-fold greater than control) but not transcellular marker propranolol, suggesting that the opening of tight junctions was involved. In diabetic beagle dogs, the bioavailability of this formulation was up to 15.2% at a dose of 2.5 IU/kg in comparison with the hypoglycemic effect of native insulin (0.5 IU/kg) delivered by subcutaneous injection. Conclusion: This formulation, recently approved by the China State Food and Drug Administration to enter clinical trials, was stable, degradationprotected and absorption-enhanced, and provided a promising formulation for oral insulin delivery.