An Alternative Formulation for Modeling Self-Excited Vibrations of Drillstring with PDC Bits (original) (raw)

Journal of Computational and Nonlinear Dynamics

Abstract

This work describes an alternative formulation of a system of nonlinear state-dependent delay differential equations (SDDDEs) that governs the coupled axial and torsional vibrations of a 2 DOF drillstring model considering a Polycrystalline Diamond Compact (PDC) bit with realistic cutter layout. Such considerations result in up to 100 state-dependent delays due to the regenerative effect of the drilling process, which renders the computational efficiency of conventional solution strategies unacceptable. The regeneration of the rock surface, associated with the bit motion history, can be described using the bit trajectory function, the evolution of which is governed by a partial differential equation (PDE). Thus the original system of SDDDEs can be replaced by a nonlinear coupled system of a PDE and ordinary differential equations (ODEs). Via the application of the Galerkin method, this system of PDE-ODEs is transformed into a system of coupled ODEs, which can be readily solved. The ...

Emmanuel Detournay hasn't uploaded this paper.

Let Emmanuel know you want this paper to be uploaded.

Ask for this paper to be uploaded.