HYPER-VINES : A HY brid Learning Fault and P erformance (original) (raw)
Fault and performance management systems, in the traditional carrier networks, are based on rule-based diagnostics that correlate alarms and other markers to detect and localize faults and performance issues. As carriers move to Virtual Network Services, based on Network Function Virtualization and multi-cloud deployments, the traditional methods fail to deliver because of the intangibility of the constituent Virtual Network Functions and increased complexity of the resulting architecture. In this paper, we propose a framework, called HYPER-VINES, that interfaces with various management platforms involved to process markers through a system of shallow and deep machine learning models. It then detects and localizes manifested and impending fault and performance issues. Our experiments validate the functionality and feasibility of the framework in terms of accurate detection and localization of such issues and unambiguous prediction of impending issues. Simulations with real network f...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.