Membrane protein structure determination by electron crystallography (original) (raw)

Single-particle refinement in electron crystallography of membrane-proteins

2007

Electron crystallography can be used to determine the structures of membrane proteins at near-atomic resolution in some cases. However, most electron crystallography projects remain at a resolution around 10 Å. This might be partly due to lack of flatness of many two-dimensional crystals. We have investigated this problem and suggest single particle processing of locally averaged unit cells to improve the quality and possibly the resolution of three-dimensional maps. Applying this method to the secondary transporter melibiose permease we have calculated a three-dimensional map that is clearer and easier to interpret than the map derived using purely electroncrystallographic methods.

Progress in the analysis of membrane protein structure and function

FEBS Letters, 2002

Structural information on membrane proteins is sparse, yet they represent an important class of proteins that is encoded by about 30% of all genes. Progress has primarily been achieved with bacterial proteins, but e¡orts to solve the structure of eukaryotic membrane proteins are also increasing. Most of the structures currently available have been obtained by exploiting the power of X-ray crystallography. Recent results, however, have demonstrated the accuracy of electron crystallography and the imaging power of the atomic force microscope. These instruments allow membrane proteins to be studied while embedded in the bi-layer, and thus in a functional state. The low signal-to-noise ratio of cryo-electron microscopy is overcome by crystallizing membrane proteins in a two-dimensional proteinl ipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at subnanometer resolution, and their conformational states to be sampled. This review summarizes the steps in membrane protein structure determination and illuminates recent progress. ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Tricks of the trade used to accelerate high-resolution structure determination of membrane proteins

FEBS Letters, 2010

The rate at which X-ray structures of membrane proteins are solved is on a par with that of soluble proteins in the late 1970s. There are still many obstacles facing the membrane protein structural community. Recently, there have been several technical achievements in the field that have started to dramatically accelerate structural studies. Here, we summarize these so-called 'tricks-of-thetrade' and include case studies of several mammalian transporters.

Cryo-electron Microscopy of Membrane Proteins

Methods in Molecular Biology, 2013

Electron crystallography studies membrane proteins in form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby secondary structure motifs could be identified.

Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins

Journal of Structural Biology, 2010

Membrane proteins fulfill many important roles in the cell and represent the target for a large number of therapeutic drugs. Although structure determination of membrane proteins has become a major priority, it has proven to be technically challenging. Electron microscopy of two-dimensional (2D) crystals has the advantage of visualizing membrane proteins in their natural lipidic environment, but has been underutilized in recent structural genomics efforts. To improve the general applicability of electron crystallography, high-throughput methods are needed for screening large numbers of conditions for 2D crystallization, thereby increasing the chances of obtaining well ordered crystals and thus achieving atomic resolution. Previous reports describe devices for growing 2D crystals on a 96-well format. The current report describes a system for automated imaging of these screens with an electron microscope. Samples are inserted with a two-part robot: a SCARA robot for loading samples into the microscope holder, and a Cartesian robot for placing the holder into the electron microscope. A standard JEOL 1230 electron microscope was used, though a new tip was designed for the holder and a toggle switch controlling the airlock was rewired to allow robot control. A computer program for controlling the robots was integrated with the Leginon program, which provides a module for automated imaging of individual samples. The resulting images are uploaded into the Sesame laboratory information management system database where they are associated with other data relevant to the crystallization screen.

Highlights from recently determined structures of membrane proteins: a focus on channels and transporters

Current Opinion in Structural Biology, 2012

After decades of absent or lackluster growth, recent years have at long last witnessed an exponential growth in the number of novel membrane protein structures determined. Every single achievement has had a tremendous impact on the scientific community, providing an unprecedented wealth of information that typically only an atomic resolution structure can contribute to our molecular understanding of how a protein functions. Presented here is a review of some of the most exciting novel structures of channels and transporters determined by X-ray crystallography in the last two years, and a discussion of their analogies, differences and mechanistic implications.

Milestones in electron crystallography

Journal of Computer-aided Molecular Design, 2006

Electron crystallography determines the structure of membrane embedded proteins in the twodimensionally crystallized state by cryo-transmission electron microscopy imaging and computer structure reconstruction. Milestones on the path to the structure are high-level expression, purification of functional protein, reconstitution into two-dimensional lipid membrane crystals, high-resolution imaging, and structure determination by computer image processing. Here we review the current state of these methods. We also created an Internet information exchange platform for electron crystallography, where guidelines for the imaging and data processing method are maintained. The server (http://2dx.org) provides the electron crystallography community with a central information exchange platform, which is structured in blog and Wiki form, allowing visitors to add comments or discussions. It currently offers a detailed step-by-step introduction to image processing with the MRC software program. The server is also a repository for the 2dx software package, a user-friendly image processing system for 2D membrane protein crystals.