Insights into the Genetic Relationships and Breeding Patterns of the African Tea Germplasm (Camellia sinensis (L.) O. Kuntze) Based on nSSR Markers and cpDNA Sequences (original) (raw)
Abstract
Africa is one of the key centers of global tea production. Understanding the genetic diversity and relationships of cultivars of African tea is important for future targeted breeding efforts for new crop cultivars, specialty tea processing, and to guide germplasm conservation efforts. Despite the economic importance of tea in Africa, no research work has been done so far on its genetic diversity at a continental scale. Twenty-three nSSRs and three plastid DNA regions were used to investigate the genetic diversity, relationships, and breeding patterns of tea accessions collected from eight countries of Africa. A total of 280 African tea accessions generated 297 alleles with a mean of 12.91 alleles per locus and a genetic diversity (H S) estimate of 0.652. A STRUCTURE analysis suggested two main genetic groups of African tea accessions which corresponded well with the two tea types Camellia sinensis var. sinensis and C. sinensis var. assamica, respectively, as well as an admixed "mosaic" group whose individuals were defined as hybrids of F2 and BC generation with a high proportion of C. sinensis var. assamica being maternal parents. Accessions known to be C. sinensis var. assamica further separated into two groups representing the two major tea breeding centers corresponding to southern Africa (Tea Research Foundation of Central Africa, TRFCA), and East Africa (Tea Research Foundation of Kenya, TRFK). Tea accessions were shared among countries. African tea has relatively lower genetic diversity. C. sinensis var. assamica is the main tea type under cultivation and contributes more in tea breeding improvements in Africa. International germplasm exchange and movement among countries within Africa was confirmed. The clustering into two main breeding centers, TRFCA, and TRFK, suggested that some traits of C. sinensis var. assamica and their associated genes possibly underwent selection Wambulwa et al. Genetic Architecture of African Tea during geographic differentiation or local breeding preferences. This study represents the first step toward effective utilization of differently inherited molecular markers for exploring the breeding status of African tea. The findings here will be important for planning the exploration, utilization, and conservation of tea germplasm for future breeding efforts in Africa.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (62)
- Ahmed, S., Stepp, J. R., Orians, C., Griffin, T., Matyas, C., Robbat, A., et al. (2014). Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS ONE 9:e109126. doi: 10.1371/journal.pone. 0109126
- Allan, G. J., and Max, T. L. (2010). Molecular genetic techniques and markers for ecological research. Nat. Educ. Knowl. 3, 2.
- Anderson, E. C., and Thompson, E. A. (2002). A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217-1229.
- Anonymous. (1962). "Historical notes on tea introduction in Africa, " in Tea Estates in Africa, ed S. Wilson (London: Mabey & Fitzclarence), 6-9.
- Bandelt, H. J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48. doi: 10.1093/oxfordjournals.molbev.a026036
- Bedran, T. B. L., Morin, M. P., Spolidorio, D. P., and Grenier, D. (2015). Black tea extract and its theaflavin derivatives inhibit the growth of periodontopathogens and modulate interleukin-8 and β-defensin secretion in oral epithelial cells. PLoS ONE 10:e0143158. doi: 10.1371/journal.pone.0143158
- Cavanagh, C. R., Chao, S., Wang, S., Huang, B. E., Stephen, S., Kiani, S., et al. (2013). Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. U.S.A. 110, 8057-8062. doi: 10.1073/pnas.12171 33110
- Chase, M., Kesseli, R., and Bawa, K. (1996). Microsatellite markers for conservation and population genetics of tropical tree species. Am. J. Bot. 83, 51-57. doi: 10.2307/2445953
- Clegg, M. T., and Zurawski, G. (1992). "Chloroplast DNA and the study of plant phylogenetics: present status and future prospects, " in Molecular Systematics of Plants, eds P. S. Soltis, D. E. Soltis, and J. J. Doyle (New York, NY: Chapman & Hall), 1-13.
- Dieringer, D., and Schlötterer, C. (2003). Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167-169. doi: 10.1046/j.1471-8286.2003.00351.x
- Doyle, J. J., and Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus 12, 13-15.
- Earl, D. A., and vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359-361. doi: 10.1007/s12686-011-9548-7
- Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. doi: 10.1093/nar/gkh340
- Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435-445. doi: 10.1038/nrg1348
- Ellis, R. T., and Nyirenda, H. E. (1995). A successful plant improvement programme on tea (Camellia sinensis). Expt. Agric. 31, 307-323. doi: 10.1017/ S0014479700025485
- Evanno, G., Regnault, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure. A simulation study. Mol. Ecol. 14, 2611-2620. doi: 10.1111/j.1365-294X.2005.02553.x FAO(Food and Agricultural Organization of the United Nations). (2014). Committee on Commodity Problems. Rome: Food and Agricultural Organization of the United Nations. 25.
- FAO (Food and Agricultural Organization of the United Nations). (2015a). Contribution of Tea Production and Exports to Food Security, Rural Development and Smallholder Welfare in Selected Producing Countries. Rome: Food and Agricultural Organization of the United Nations.
- FAO (Food and Agricultural Organization of the United Nations). (2015b). Coping with Climate Change -the Roles of Genetic Resources for Food and Agriculture. Rome: Food and Agricultural Organization of the United Nations.
- FAOSTAT. (2015). FAO database. Food Agric. Organ. United Nations. Available online at: http://faostat3.fao.org/download/Q/QC/E (Accessed 10 May 2015).
- Fan, L., Zhang, M. Y., Liu, Q. Z., Li, L. T., Song, Y., Wang, L. F., et al. (2013). Transferability of newly developed pear SSR markers to other Rosaceae species. Plant. Mol. Biol. Rep. 31, 1271-1282. doi: 10.1007/s11105-013-0586-z Felsenstein, J. (2004). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, Seattle: University of Washington.
- Fu, Y. B. (2015). Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 128, 2131-2142. doi: 10.1007/s00122-015-2585-y Hashimoto, M. (2001). "The Origin of the Tea Plant, " in Proceedings of 2001 International Conference on O-CHA (tea) Culture and Science (Session II) (Shizuoka).
- Hashimoto, M., and Takashi, S. (1978). Morphological studies on the origin of the tea plant V, a proposal of one place of origin by cluster analysis. Jap. J. Trop. Agric. 21, 93-101.
- Kalinowski, S. T. (2005). HP-RARE 1.0: a computer program for performing rare faction on measures of allelic richness. Mol. Ecol. Notes 5, 187-189. doi: 10.1111/j.1471-8286.2004.00845.x
- Kamunya, S. M., Wachira, F. N., Nyabundi, K. W., Kerio, L., and Chalo, R. M. (2009). The Tea Research Foundation of Kenya pre-releases purple tea variety for processing health tea product. Tea 30, 3-10.
- Kaundun, S. S., and Matsumoto, S. (2011). Molecular evidence for maternal inheritance of the chloroplast genome in tea, Camellia sinensis (L.) O. Kuntze. J. Sci. Food. Agric. 91, 2660-2663. doi: 10.1002/jsfa.4508
- Kisha, T. J., and Cramer, C. S. (2011). Determining redundancy of short-day onion accessions in a germplasm collection using microsatellite and targeted region amplified polymorphic markers. J. Am. Soc. Hort. Sci. 136, 129-134.
- Kowalsick, A., Kfoury, N., Robbat, A. Jr., Ahmed, S., Orians, C., Griffin, T., et al. (2014). Metabolite profiling of Camellia sinensis by automated sequential, multidimensional gas chromatography/mass spectrometry reveals strong monsoon effects on tea constituents. J. Chrom. 1370, 230-239. doi: 10.1016/j.chroma.2014.10.058
- Larson, C. (2015). Reading the tea leaves for effects of climate change. Science 348, 953-954. doi: 10.1126/science.348.6238.953
- Librado, P., and Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452. doi: 10.1093/bioinformatics/btp187
- Liu, K., and Muse, S. V. (2005). PowerMaker: integrated analysis environment for genetic marker data. Bioinformatics 21, 2128-2129. doi: 10.1093/bioinformatics/bti282
- Matheson, J. K., and Bovill, E. W. (1950). Tea. East African Agriculture: A Short Survey of the Agriculture of Kenya, Uganda, Tanganyika, and Zanzibar and of its Principal Products. London: Oxford University Press.
- Meegahakumbura, M. K., Wambulwa, M. C., Thapa, K. K., Li, M. M., Möller, M., Xu, J. C., et al. (2016). Indications for three independent domestication events for the tea plant (Camellia sinensis (L.) O. Kuntze) and new insights into the origin of tea germplasm in China and India revealed by nuclear microsatellites. PLoS ONE 11:e0155369. doi: 10.1371/journal.pone.01
- Ming, T. L. (2000). Monograph of the Genus Camellia. Kunming: Yunnan Science and Technology Press.
- Ming, T. L., and Bartholomew, B. (2007). "Theaceae, " in Flora of China, eds Z. Y. Wu, P. H. Raven and D. Y. Hong (Beijing: Science Press and St. Louis: Missouri Botanical Garden Press), 366-478.
- Mogensen, H. L. (1996). The hows and whys of cytoplasmic inheritance in seed plants. Amer. J. Bot. 83, 383-404. doi: 10.2307/2446172
- Mondal, T. K. (2014). Breeding and Biotechnology of Tea and its Wild Species. New York, NY: Springer Science and Business Media.
- Morris, G. P., Ramub, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhyaya, H. D., et al. (2013). Population genomic and genome-wide association studies of agro-climatic traits in sorghum. Proc. Natl. Acad. Sci. U.S.A. 110, 453-458. doi: 10.1073/pnas.1215985110
- Paul, S., Wachira, F. N., Powell, W., and Waugh, R. (1997). Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94, 255-263. doi: 10.1007/s001220050408
- Paule, J., Scherbantin, A., and Dobeš, C. (2012). Implications of hybridisation and cytotypic differentiation in speciation assessed by AFLP and plastid haplotypes -a case study of Potentilla alpicola La Soie. BMC Evol. Biol. 12:132. doi: 10.1186/1471-2148-12-132
- Peakall, R., and Smouse, P. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research -an update. Bioinformatics 82, 2537-2539. doi: 10.1093/bioinformatics/bts460
- Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
- Rambaut, A. (2008). FigTree, v1.3.1. Institute of Evolutionary Biology. University of Edinburgh. Available online at: http://tree.bio.ed.ac.uk/software/figtree/ (Accessed 27 October 2015).
- Ravigné, V., Dieckmann, U., and Olivieri, I. (2009). Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am. Nat. 174, E141-E169. doi: 10.1086/ 605369
- Rosenberg, N. A., Burke, T., Elo, K., Feldman, M. W., Freidlin, P. J., Groenen, M. A., et al. (2001). Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159, 699-713.
- Selkoe, K. A., and Toone, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615-629. doi: 10.1111/j.1461-0248.2006.00889.x
- Seurei, P. (1996). Tea improvement in Kenya: a review. Tea 17, 76-81.
- Singh, R. P., Rajaram, S., Miranda, A., Huerta-Espino, J., and Autrique, E. (2012). "Comparison of two crossing and four selection schemes for yield, yield traits and slow rusting resistance to leaf rust in wheat, " in Wheat: Prospects for Global Improvement, eds H. J. Braun, F. Altay, W. E. Kronstad, S. P. S. Beniwal and A. McNab (New York, NY: Springer Science), 388.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. doi: 10.1093/molbev/mst197
- Taniguchi, F., Kimura, K., Saba, T., Ogino, A., Yamaguchi, S., and Tanaka, J. (2014). Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genet. Genomes 10, 1555-1565. doi: 10.1007/s11295-014-0779-0
- Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: Concatenation software for the fast assembly of multigene datasets with character set and codon information. Cladistics, 27, 171-180. doi: 10.1111/j.1096- 0031.2010.00329.x
- Van Heerwaarden, J., Hufford, M. B., and Ross-Ibarra, J. (2012). Historical genomics of North American maize. Proc. Natl. Acad. Sci. U.S.A. 109, 12420-12425. doi: 10.1073/pnas.1209275109
- Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Resour. 4, 535-538. doi: 10.1111/j.1471- 8286.2004.00684.x
- Wachira, F. N., Waugh, R., Hackett, C. A., and Powell, W. (1995). Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome 38, 201-210. doi: 10.1139/g95-025
- Wambulwa, M. C., Meegahakumbura, M. K., Chalo, R., Kamunya, S., Muchugi, A., Xu, J. C., et al. (2016). Nuclear microsatellites reveal the genetic architecture and breeding history of tea germplasm of East Africa. Tree Genet. Genomes 12, 11. doi: 10.1007/s11295-015-0963-x
- Wight, W. (1959). Nomenclature and classification of the tea plant. Nature 183, 1726-1728. doi: 10.1038/1831726a0
- Wight, W. (1962). Tea classification revised. Curr. Sci. 31, 298-299.
- Wolfe, K. H., Li, W. H., and Sharp, P. M. (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. U.S.A. 84, 9054-9058. doi: 10.1073/pnas.84.24.9054
- Xie, W., Wang, G., Yuan, M., Yao, W., Lyu, K., Zhao, H., et al. (2015). Breeding signatures of rice improvement revealed by agenomic variation map from a large germplasm collection. Proc. Natl. Acad. Sci. U.S.A. 112, 5411-5419. doi: 10.1073/pnas.1515919112
- Yang, C. S., Wang, X., Lu, G., and Picinich, S. C. (2009). Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 9, 429-439. doi: 10.1038/nrc2641
- Yang, J. B., Yang, S. X., Li, H. T., Yang, J., and Li, D. Z. (2013). Comparative chloroplast genomes of Camellia Species. PLoS ONE 8:e73053. doi: 10.1371/journal.pone.0073053
- Yao, M. Z., Chen, L., and Liang, Y. R. (2008). Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programs. Plant Breed. 127, 166-172. doi: 10.1111/j.1439-0523.2007.01448.x
- Yao, M. Z., Ma, C. L., Qiao, T. T., Jin, J. Q., and Chen, L. (2012). Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet. Genomes 8, 205-220. doi: 10.1007/s11295-011- 0433-z Yin, H. I., Deng, Y. F., Wang, H. F., Liu, W. G., Zhuang, X. Y., and Chu, W. H. (2015). Tea polyphenols as an anti-virulent compound disrupt quorum sensing regulated pathogenicity of Pseudomonas aeruginosa. Sci. Rep. 5:16158. doi: 10.1038/srep16158