A Survey on Deep Learning in Big Data and its Applications (original) (raw)
Abstract
Individuals can exchange real-time information thanks to the vast spread and reach of social networks. This active participation with the corporate data, as emails, documents, databases, business processor history, etc and content published on the Web, as age and contact details, reviews, comments, photos, images, videos, sounds, texts, famous cookies, or ecommerce transactions, exchanges on social networks, are very important. Data recovery from different sources can be a difficult task. A timely and correct assessment of an event currently under discussion is critical to the effectiveness of the used method. This information, collected in the Web can then be updated. Various ways are developed to automate this necessity, due to the extraction and analysis of correct social media content. Alleviation methods do not adequately incorporate these approaches. It may be necessary to reveal them in order to make further progress, particularly in the areas of energy efficiency and cleaner...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (48)
- Imran, M., Castillo, C., Lucas, J., Meier, P. & Vieweg, S., (2014), AIDR : Artificial intelligence for disaster response, Proceedings of the 23 rd International Conference on World Wide Web, (ICT-DM), 159- 162. https://doi.org/10.1145/2567948.2577034
- Olteanu, A., Vieweg, S., & Castillo, C. (2015), "What to Expect When the Unexpected Happens", Proceedings of the 18 th ACM Conference on Computer Supported Cooperative Work & Social Computing - CSCW '15. doi:10.1145/2675133.2675242
- Toppel, M., Bartels, M., Nagel, C. and Hahne, M., (2016), "A Social Network to Identify Responsibilities and Expertises in Crisis Scenarios", 3 rd International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), 2016
- Vulic, I. and Moens, M.-F., (2015), "Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings", SIGIR'15 Proceedings of the 38 th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pages 363-372, Santiago, Chile -August 09 -13, 2015
- Bouzidi, Z., Boudries, A. & Amad, M. (2020). Towards a Smart Interface-based Automated Learning Environment Through Social Media for Disaster Management and Smart Disaster Education. Advances in Intelligent Systems and Computing. SAI 2020. Vol 1228. Springer, Cham, 443-468. https://doi.org/10.1007/978-3-030-52249- 0_31
- Ofli, F. and Meier, P. and Imran, M. and Castillo, C. and Tuia, D. and Rey, N. and Briant, J. and Millet, P. and Reinhard, F. and Parkan, M. and Joost, S., (2016), Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response, Big Data, vol. 4, No. 1
- Horita, Flavio E.A. and Albuquerque, Joao Porto (de) and Marchezini, Victor and Mendiondo, Eduardo M., (2017), Bridging the gap between decision-making and emerging big data sources: An application of a model-based framework to disaster management in Brazil, Decision Support Systems, vol. 97, pp. 2-22, doi:10.1016/j.dss.2017.03.001
- Immonen, A. and Paakkonen, P. and Ovaska, E., (2015), Evaluating the Quality of Social Media Data in Big Data Architecture, IEEE Access, vol. 3, pp. 2028-2043, doi:10.1109/ACCESS.2015.2490723
- Smith, M., Henne, B., Szongott, C. and Voigt, G. von, (2012), Big data privacy issues in public social media, 6 th IEEE International Conference on Digital Ecosystems Technologies, pp. 1-6, Doi:10.1109/DEST.2012.6227909
- Saranya, M. and Prema, A., (2017), Survey On Big Data Analytcis using Hadoop ETL, International Journal of Computer Trends and Technology (IJCTT), vol. 48, No. 1, doi:10.14445/22312803/IJCTT- V48P105
- Zaini, N.A., Noor, S.F.M. & Zailani, S.Z.M. (2020). Design and Development of Flood Disaster Game-based Learning based on Learning Domain. In International Journal of Engineering and Advanced Technology (IJEAT), 9(4), pp. 679-685, DOI:10.35940/ijeat.C6216.049420
- Vivakaran, M. V. & Neelamalar, M. (2018). Utilization of Social Media Platforms for Educational Purposes among the Faculty of Higher Education with Special Reference to Tamil Nadu. In Higher Education for the Future, 5(1), pp. 4-19, DOI:10.1177/2347631117738638
- He, R., Liu, Y., Yu, G., Tang, J., Hu, Q. & Dang, J. (2016). Twitter summarization with social-temporal context. In World Wide Web, 20(2), pp. 267-290, DOI:10.1007/s11280-016-0386-0
- Dussart, A., Pinel-Sauvagnat, K. & Hubert, G. (2020). Capitalizing on a TREC Track to Build a Tweet Summarization Dataset. In Text REtrieval Conference, (TREC'2020)
- Lamsal, R. & Kumar, T. V. V. (2020). Classifying Emergency Tweets for Disaster Response. In International Journal of Disaster Response and Emergency Management (IJDREM), 3(1), pp. 14-29, DOI:10.4018/IJDREM.2020010102
- Rudra, K., Goyal, P., Ganguly, N., Imran, M. & Mitra, P. (2019). Summarizing situational tweets in crisis scenarios : An extractive- abstractive approach. In IEEE Transactions on Computational Social Systems, 6(5), pp. 981-993, DOI:10.1109/tcss.2019.2937899
- Bouzidi Z., Boudries A. and Amad M., (2018), A New Efficient Alert Model for Disaster Management, Proceedings of Conference AIAP'2018 : Artificial Intelligence and Its Applications, El-Oued, Algeria,
- Bouzidi, Z., Amad, M. and Boudries, A., (2019), Intelligent and Real- time Alert Model for Disaster Management based on Information retrieval from Multiple Sources, International Journal of Advanced Media and Communication}, Vol. 7, No. 4, pp. 309-330, doi:10.1145/253260.253325
- Bouzidi, Z., Boudries, A. & Amad, M. (2021). Enhancing Crisis Management because of Deep Learning, Big Data and Parallel Computing Environment: Survey. Proceedings of the 3 rd International Conference on Electrical, Communication and Computer Engineering (ICECCE), No. 443, 12-13 June 2021, Kuala Lumpur, Malaysia, Accepted
- Lefever, S., Dal, M. and Matthiasdottir, A., (2007), Online data collection in academic research : advantages and limitations, Journal British Journal of Educational Technology (BJET) of British Educational Research Association (BERA), vol. 38, No. 4, pp. 574- 582, doi:10.1111/j.1467-8535.2006.00638.x
- Karma, S., Zorba, E., Pallis, G.C., Statheropoulos, G., Balta, I., Mikedi, K., Vamvakari, J., Pappa, A., Chalaris, M., Xanthopoulos, G. and Statheropoulos, M., (2015), Use of unmanned vehicles in search and rescue operations in forest fires: Advantages and limitations observed in a field trial, International Journal of Disaster Risk Reduction, vol. 13, pp. 307-312, doi:https://doi.org/10.1016/j.ijdrr.2015.07.009
- Bello, O. M. and Aina, Y. A., (2014), Satellite Remote Sensing as a Tool in Disaster Management and Sustainable Development : Towards a Synergistic Approach, Procedia -Social and Behavioral Sciences, vol. 120, pp. 365-373, 3 rd International Geography Symposium, GEOMED2013, 10-13 June 2013, Antalya, Turkey, doi:10.1016/j.sbspro.2014.02.114
- Zhang, D. & Qiu, R. C., (2018), Research on big data applications in Global Energy Interconnection, Global Energy Interconnection, vol 1, No. 3, pp. 352-357, ISSN 2096-5117, doi:10.14171/j.2096- 5117.gei.2018.03.006.
- Ruggiero, A. and Vos, M., (2014), Social Media Monitoring for Crisis Communication : Process, Methods and Trends in the Scientific Literature, In Online Journal of Communication and Media Technologies, Vol. 4, No. 1
- Young, S. D., Rivers, C. and Lewis, B., (2014), Methods of using real- time social media technologies for detection and remote monitoring of HIV outcomes, Preventive Medicine, vol. 63, pp. 112-115
- Imran, M., Ofli, F., Caragea, D. & Torralba, A., (2020), Using AI and Social Media Multimodal Content for Disaster Response and Management : Opportunities, Challenges, and Future Directions. Information Processing & Management, 57(5), 1-9. http://sci- hub.tw/10.1016/j.ipm.2020.102261
- Stillger, M., Lohman, G. M., Markl, V. and Kandil, M., (2001), LEO- DB2's learning optimizer, Very Large DataBases (VLDB), vol. 1, pp. 19-28
- Battre, D., Ewen, S., Hueske, F., Kao, O., Markl, V. and Warneke, D., (2010), Nephele/PACTs: a programming model and execution framework for web-scale analytical processing, Proceedings of the 1st ACM symposium on Cloud computing, pp. 119-130
- Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.-C., Hueske, F., Heise, A., Kao, O., Leich, M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax, M. J., Schelter, S., Hoger, M., Tzoumas, K. and Warneke, D., (2014), The stratosphere platform for big data analytics, The VLDB Journal, vol. 23, No. 6, pp. 939-964, Springer Berlin Heidelberg
- Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S. and Tzoumas, K., (2015), Apache flink : Stream and batch processing in a single engine, Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, vol. 36, No. 4, IEEE Computer Society
- Harshawardhan, S. B. and Devendra, P. G, (2014), A REVIEW PAPER ON BIG DATA AND HADOOP, International Journal of Scientific and Research Publications, vol. 4, No. 10, pp. 756-764
- Krizhevsky, A. and Sutskever, I. and Hinton, G., (2012), ImageNet classification with deep convolutional neural networks, Proceedings of Advances in Neural Information Processing Systems, vol. 25, pp. 1090-1098
- Bouzidi, Z. Boudries, A. & Amad, M., Deep Learning and Social Media for Managing Disaster: Survey, IntelliSys 2021 Conference, Amsterdam, Accepted
- Roshan, S., Srivathsan, G., Deepak, K. and Chandrakala, S., (2020), Violence Detection in Automated Video Surveillance : Recent Trends and Comparative Studies, pp. 157-171, doi:10.1016/B978-0-12- 816385-6.00011-8
- Berglund, M., Raiko, T., Honkala, M., Karkkainen, L., Vetek, A. and Karhunen, J., (2015), Bidirectional Recurrent Neural Networks as Generative Models, MIT Press, Cambridge, MA, USA
- Sainath, T., Vinyals, O., Senior, A. and Sak, H., (2015), Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks, pp. 4580-4584, doi:10.1109/ICASSP.2015.7178838
- Khuong, N., Cuong L. and Hong, P., (2016), Deep Bi-directional Long Short-Term Memory Neural Networks for Sentiment Analysis of Social Data, pp. 255-268, doi:10.1007/978-3-319-49046-5_22
- Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. & Arshad, H. (2018). State-of-the-art in artificial neural network applications : A survey. In Heliyon, 4(11), DOI:10.1016/j.heliyon.2018.e00938
- Alam, Firoj and Imran, Muhammad and Ofli, Ferda, (2017), Image4Act : Online Social Media Image Processing for Disaster Response, Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (ASONAM 17), pp. 601-604, doi:10.1145/3110025.3110164
- Nguyen, D. T., Al-Mannai, K., Joty, S. R., Sajjad, H., Imran, M. and Mitra, P., (2017b), Robust classification of crisis-related data on social networks using convolutional neural networks, ICWSM, pp. 632-635
- Kabir, Md Yasin and Madria, Sanjay Kumar, (2019), A Deep Learning Approach for Tweet Classification and Rescue Scheduling for Effective Disaster Management, Proceedings of the 27 th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, (SIGSPATIAL'19), pp. 269-278, doi:10.1145/3347146.3359097
- He, R., Liu, Y., Yu, G., Tang, J., Hu, Q. & Dang, J. (2016). Twitter summarization with social-temporal context. In World Wide Web, 20(2), pp. 267-290, DOI:10.1007/s11280-016-0386-0
- Canon, M. J., Satuito, A., Sy, C., (2018), Determining Disaster Risk Management Priorities through a Neural Network-Based Text Classifier, 2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 2018, pp. 237-241, doi:10.1109/IS3C.2018.00067
- Zhao, J., Deng, F., Cai, Y. and Chen, J., (2018), Long short-term memory -Fully connected (LSTM-FC) neural network for PM2.5 concentration prediction, Chemosphere, vol. 220, doi:10.1016/j.chemosphere.2018.12.128
- Kabir, Md Yasin and Madria, Sanjay Kumar, (2019), A Deep Learning Approach for Tweet Classification and Rescue Scheduling for Effective Disaster Management, Proceedings of the 27 th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, (SIGSPATIAL'19), pp. 269-278, doi:10.1145/3347146.3359097
- Pouyanfar, S. and Tao, Y. and Tian, H. and Chen, S.-C. and Shyu, M.- L., (2018), Multimodal deep learning based on multiple correspondence analysis for disaster management, World Wide Web, vol. 22, pp. 1893-1911, doi:10.1007/s11280-018-0636-4
- Narciso, D. A. C. & Martins, F.G., (2020), Application of machine learning tools for energy efficiency in industry: A review, Energy Reports, vol. 6, pp. 1181-1199, ISSN 2352-4847, doi:10.1016/j.egyr.2020.04.035.
- Real, A. J. d., Dorado F. & Durán, J., (2020), Energy Demand Forecasting Using Deep Learning: Applications for the French Grid, Energies, 13, 2242; doi:10.3390/en13092242 www.mdpi.com/journal/energies