Linking molecular affinity and cellular specificity in cadherin-mediated adhesion (original) (raw)

Similarities between heterophilic and homophilic cadherin adhesion

The mechanism that drives the segregation of cells into tissuespecific subpopulations during development is largely attributed to differences in intercellular adhesion. This process requires the cadherin family of calcium-dependent glycoproteins. A widely held view is that protein-level discrimination between different cadherins on cell surfaces drives this sorting process. Despite this postulated molecular selectivity, adhesion selectivity has not been quantitatively verified at the protein level. In this work, molecular force measurements and bead aggregation assays tested whether differences in cadherin bond strengths could account for cell sorting in vivo and in vitro. Studies were conducted with chicken N-cadherin, canine E-cadherin, and Xenopus C-cadherin. Both qualitative bead aggregation and quantitative force measurements show that the cadherins cross-react. Furthermore, heterophilic adhesion is not substantially weaker than homophilic adhesion, and the measured differences in adhesion do not correlate with cell sorting behavior. These results suggest that the basis for cell segregation during morphogenesis does not map exclusively to protein-level differences in cadherin adhesion.

Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior

Cell Reports, 2018

Type II cadherins are cell-cell adhesion proteins critical for tissue patterning and neuronal targeting but whose molecular binding code remains poorly understood. Here, we delineate binding preferences for type II cadherin cell-adhesive regions, revealing extensive heterophilic interactions between specific pairs, in addition to homophilic interactions. Three distinct specificity groups emerge from our analysis with members that share highly similar heterophilic binding patterns and favor binding to one another. Structures of adhesive fragments from each

Cadherin recognition and adhesion

Current Opinion in Cell Biology, 2012

Classical cadherins are the principle adhesive proteins at cohesive intercellular junctions, and are essential proteins for morphogenesis and tissue homeostasis. Because subtype-dependent differences in cadherin adhesion are at the heart of cadherin functions, several structural and biophysical approaches have been used to elucidate relationships between cadherin structures, biophysical properties of cadherin bonds, and cadherin-dependent cell functions. Some experimental approaches appeared to provide conflicting views of the cadherin binding mechanism. However, recent structural and biophysical data, as well as computer simulations generated new insights into classical cadherin binding that increasingly reconcile diverse experimental findings. This review summarizes these recent findings, and highlights both the consistencies and remaining challenges needed to generate a comprehensive model of cadherin interactions that is consistent with all available experimental data.

Functional Analysis of the Structural Basis of Homophilic Cadherin Adhesion

Biophysical Journal, 2003

The structures of many cell surface adhesion proteins comprise multiple tandem repeats of structurally similar domains. In many cases, the functional significance of this architecture is unknown, and there are several cases in which evidence for individual domain involvement in adhesion has been contradictory. In particular, the extracellular region of the adhesion glycoprotein cadherin consists of five tandemly arranged domains. One proposed mechanism postulated that adhesion involves only trans interactions between the outermost domains. However, subsequent investigations have generated several competing models. Here we describe direct measurements of the distance-dependent interaction potentials between cadherin mutants lacking different domains. By quantifying both the absolute distances at which opposed cadherin fragments bind and the quantized changes in the interaction potentials that result from deletions of individual domains, we demonstrate that two domains participate in homophilic cadherin binding. This finding contrasts with the current view that cadherins bind via a single, unique site on the protein surface. The potentials that result from interactions involving multiple domains generate a novel, modular binding mechanism in which opposed cadherin ectodomains can adhere in any of three antiparallel alignments.

Mechanism of homophilic cadherin adhesion

Current opinion in cell biology, 2000

Direct measurements of the distance-dependent forces between membrane-bound cadherins were used to test current models of homophilic cadherin interactions. The results reveal a complex binding mechanism in which the proteins adhere in multiple alignments that involve more than the amino-terminal domains.

Cadherin-mediated cell–cell adhesion: sticking together as a family

Current Opinion in Structural Biology, 2003

The cadherins comprise a family of single-pass transmembrane proteins critical for cell-cell adhesion in vertebrates and invertebrates. The recently determined structure of the whole ectodomain from C-cadherin suggests that the adhesion of cadherins presented by juxtaposed cells is mediated by a strand-swapped dimer in which core hydrophobic elements are exchanged between the partner molecules. Sequence analysis suggests that several cadherin subfamilies share this adhesive mechanism. Recent work has shed new light on the molecular basis of cadherin adhesion, although understanding the specificity of these interactions remains a major challenge.

Cadherin-mediated cell sorting not determined by binding or adhesion specificity

The Journal of cell biology, 2002

Cadherin adhesion molecules play important roles in the establishment of tissue boundaries. Cells expressing different cadherins sort out from each other in cell aggregation assays. To determine the contribution of cadherin binding and adhesion specificity to the sorting process, we examined the adhesion of cells to different purified cadherin proteins. Chinese hamster ovary cell lines expressing one of four different cadherins were allowed to bind to the purified cadherin extracellular domains of either human E-cadherin or Xenopus C-cadherin, and the specificity of adhesion was compared with cell-sorting assays. None of the different cadherin-expressing cells exhibited any adhesive specificity toward either of the two purified cadherin substrates, even though these cadherins differ considerably in their primary sequence. In addition, all cells exhibited similar strengthening of adhesion on both substrates. However, this lack of adhesive specificity did not determine whether differe...