An iron detection system determines bacterial swarming initiation and biofilm formation (original) (raw)
Abstract
Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising a two-component system (TCS) and the TCS-regulated iron chelator 2-isocyano-6,7dihydroxycoumarin (ICDH-Coumarin) that directly senses and modulates environmental ferric iron (Fe 3+) availability to determine swarming initiation and biofilm formation. We demonstrate that the two-component system RssA-RssB (RssAB) directly senses environmental ferric iron (Fe 3+) and transcriptionally modulates biosynthesis of flagella and the iron chelator ICDH-Coumarin whose production requires the pvc cluster. Addition of Fe 3+ , or loss of ICDH-Coumarin due to pvc deletion results in prolonged RssAB signaling activation, leading to delayed swarming initiation and increased biofilm formation. We further show that ICDH-Coumarin is able to chelate Fe 3+ to switch off RssAB signaling, triggering swarming initiation and biofilm reduction. Our findings reveal a novel cellular system that senses iron levels to regulate bacterial surface lifestyle. Iron is essential for many cellular processes 1. While low iron bioavailability is a limiting factor for cell survival in hostile environments, excess iron within the cell is toxic due in part to the formation of hydroxyl radicals through Fenton reactions 2. Iron also serves as a stress signal that regulates microbial physiology, such as susceptibility to antibiotics 3. Competition between the host and pathogens for limited iron resources may determine infections outcome 4. Many homeostatic systems thus tightly control intracellular iron concentration in bacteria in order to allow adaptation to ever-changing environments 5-7. Swarming and biofilm formation are two typical multicellular behaviors of bacteria living on a surface 8. Bacteria within biofilms embedded in an extracellular matrix undergo cellular differentiation and may acquire resistance to environmental stress and host immune responses 9,10. On the other hand, swarming, which is observed in various bacterial species, represents a rapid, cell density-dependent, flagellum-driven movement of bacteria on a surface, and is closely associated with antibiotic resistance and production of virulence factors 11-15. Swarming is characterized by a non-motile lag phase and an active migration phase associated with metabolic
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (53)
- Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215-237 (2003).
- Touati, D. Iron and oxidative stress in bacteria. Arch Biochem Biophys 373, 1-6 (2000).
- Yeom, J., Imlay, J. A. & Park, W. Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem 285, 22689-22695 (2010).
- Marx, J. J. Iron and infection: competition between host and microbes for a precious element. Best Pract Res Clin Haematol 15, 411-426 (2002).
- Braun, V. & Hantke, K. Recent insights into iron import by bacteria. Curr Opin Chem Biol 15, 328-334 (2011).
- Cornelis, P., Wei, Q., Andrews, S. C. & Vinckx, T. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 3, 540-549 (2011).
- Troxell, B. & Hassan, H. M. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3, 59 (2013).
- Verstraeten, N. et al. Living on a surface: swarming and biofilm formation. Trends Microbiol 16, 496-506 (2008).
- Lewis, K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322, 107-131 (2008).
- Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95-108 (2004).
- Kearns, D. B. & Losick, R. Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49, 581-590 (2003).
- Butler, M. T., Wang, Q. & Harshey, R. M. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA 107, 3776-3781 (2010).
- Lai, S., Tremblay, J. & Deziel, E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 11, 126-136 (2009).
- Overhage, J., Bains, M., Brazas, M. D. & Hancock, R. E. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190, 2671-2679 (2008).
- Partridge, J. D. & Harshey, R. M. Swarming: flexible roaming plans. J Bacteriol 195, 909-918 (2013).
- Harshey, R. M. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57, 249-273 (2003).
- Kim, W. & Surette, M. G. Metabolic differentiation in actively swarming Salmonella. Mol Microbiol 54, 702-714 (2004).
- Givskov, M. et al. Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180, 742-745 (1998).
- Rather, P. N. Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7, 1065-1073 (2005).
- Van Houdt, R., Givskov, M. & Michiels, C. W. Quorum sensing in Serratia. FEMS Microbiol Rev 31, 407-424 (2007).
- Mukherjee, S. et al. Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation. Proc Natl Acad Sci USA 112, 250-255 (2015).
- Inoue, T. et al. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol 189, 950-957 (2007).
- Wang, Q., Frye, J. G., McClelland, M. & Harshey, R. M. Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52, 169-187 (2004).
- McCarter, L. & Silverman, M. Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol 171, 731-736 (1989).
- Matilla, M. A. et al. Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol 9, 1842-1850 (2007).
- Wu, Y. & Outten, F. W. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol 191, 1248-1257 (2009).
- Singh, P. K., Parsek, M. R., Greenberg, E. P. & Welsh, M. J. A component of innate immunity prevents bacterial biofilm development. Nature 417, 552-555 (2002).
- Banin, E., Vasil, M. L. & Greenberg, E. P. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102, 11076-11081 (2005).
- Wosten, M. M., Kox, L. F., Chamnongpol, S., Soncini, F. C. & Groisman, E. A. A signal transduction system that responds to extracellular iron. Cell 103, 113-125 (2000).
- Laub, M. T. & Goulian, M. Specificity in two-component signal transduction pathways. Annu Rev Genet 41, 121-145 (2007).
- Krell, T. et al. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64, 539-559 (2010).
- Lai, H. C. et al. The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol 187, 3407-3414 (2005).
- Lin, C. S. et al. RssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens. Infect Immun 78, 4870-4881 (2010).
- Soo, P. C. et al. Regulation of swarming motility and flhDC Sm expression by RssAB signaling in Serratia marcescens. J Bacteriol 190, 2496-2504 (2008).
- Tsai, Y. H. et al. RssAB signaling coordinates early development of surface multicellularity in Serratia marcescens. PLoS One 6, e24154 (2011).
- Wei, J. R. et al. Biochemical characterization of RssA-RssB, a two-component signal transduction system regulating swarming behavior in Serratia marcescens. J Bacteriol 187, 5683-5690 (2005).
- Wyckoff, E. E., Mey, A. R., Leimbach, A., Fisher, C. F. & Payne, S. M. Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bacteriol 188, 6515-6523 (2006).
- Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔC T Method. Methods 25, 402-408 (2001).
- Clarke, M. B., Hughes, D. T., Zhu, C., Boedeker, E. C. & Sperandio, V. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103, 10420-10425 (2006).
- Stintzi, A. et al. Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology 142 (Pt 5), 1181-1190 (1996).
- Clarke-Pearson, M. F. & Brady, S. F. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. J Bacteriol 190, 6927-6930 (2008).
- Drake, E. J. & Gulick, A. M. Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6,7-dihydroxycoumarin. J Mol Biol 384, 193-205 (2008).
- Qaisar, U. et al. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes. PLoS One 8, e62735 (2013).
- Rowland, M. A. & Deeds, E. J. Crosstalk and the evolution of specificity in two-component signaling. Proc Natl Acad Sci USA 111, 5550-5555 (2014).
- Garcia, C. A., Alcaraz, E. S., Franco, M. A. & Passerini de Rossi, B. N. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence. Front Microbiol 6, 926 (2015).
- Mehi, O. et al. Perturbation of iron homeostasis promotes the evolution of antibiotic resistance. Mol Biol Evol 31, 2793-2804 (2014).
- Skaar, E. P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6, e1000949 (2010).
- Visaggio, D. et al. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa. Front Microbiol 6, 902 (2015).
- Nishino, K. et al. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol Microbiol 61, 645-654 (2006).
- Sambrook, J., Maniatis, T. & Fritsch, E. F. Molecular cloning: a laboratory manual, 2nd ed. (Cold Spring Harbor Laboratory, 1989).
- Dietz, P., Gerlach, G. & Beier, D. Identification of target genes regulated by the two-component system HP166-HP165 of Helicobacter pylori. J Bacteriol 184, 350-362 (2002).
- Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55, 611-622 (2009).
- Schwyn, B. & Neilands, J. B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47-56 (1987).