Simple proofs of Bernstein-type inequalities (original) (raw)
1988, Proceedings of the American Mathematical Society
Abstract
A polynomial identity is established by the use of Lagrange interpolation. This identity is used to obtain simple proofs of Bernstein-type inequalities, one of which is an improvement of a recent result of Frappier, Rahman, and Ruscheweyh.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (13)
- C. Frappier, Q. I. Rahman and St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1985), 69-99.
- N. K. Govil and Q. I. Rahman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.
- N. K. Govil, On the derivative o¡ a polynomial, Proc. Amer. Math. Soc. 41 (1973), 543-546.
- M. A. Malik, On the derivative o¡ a polynomial, J. London Math. Soc. 1 (1969), 57-60.
- _, An integral estimate for polynomials, Proc. Amer. Math. Soc. 91 (1984), 281-284.
- P. J. O'Hara, Another proof o¡Bernstein's theorem, Amer. Math. Monthly 80 (1973), 673-674.
- P. J. O'Hara and R. S. Rodriguez, Some properties of self-inversive polynomials, Proc. Amer. Math. Soc. 44 (1974), 331-335.
- Q. I. Rahman, Applications o¡ functional analysis to extremal problems for polynomials, Sém. Math. Supérieures, Presses Univ. Montréal, 1967.
- Z-tk i_i zn + X sk License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
- W.W. Rogosinski, Extremum problems for polynomials and trigonometrical polynomials, J. Lon- don Math. Soc. 29 (1954), 259-275.
- E. B. Saff and T. Sheil-Small, Coefficient and integral mean estimates for algebraic and trigono- metric polynomials with restricted zeros, J. London Math. Soc. 9 (1974), 16-22.
- A. C. Schaeffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related ¡unctions, Bull. Amer. Math. Soc. 47 (1941), 565-579.
- G. Szegö, Über einen Satz des Herrn Serge Bernstein, Schriften Königsberger Gelehrten Gesell- schaft 5 (1928), 59-70.