Synthesis and Anticancer Evaluation of New Benzenesulfonamide Derivatives (original) (raw)
Related papers
Synthesis and Anticancer Evaluation of Benzenesulfonamide Derivatives
Heterocycles - Synthesis and Biological Activities [Working Title]
A highly efficient protocol was developed for the synthesis of 3-(indoline-1carbonyl)-N-(substituted) benzene sulfonamide analogs with excellent yields. The new 3-(indoline-1-carbonyl)-N-(substituted) benzene sulfonamide derivatives (4a-g and 5a-g) were evaluated in vitro anticancer activity against a series of different cell lines like A549 (lung cancer cell), HeLa (cervical), MCF-7 (breast cancer cell) and Du-145 (prostate cancer cell) respectively. The results of the anticancer activity data revealed that most of the tested compounds showed IC 50 values from 1.98 to 9.12 μM in different cell lines. Compounds 4b, 4d, 5d, and 5g were the most potent, with IC 50 values ranging from 1.98 to 2.72 μM in different cell lines.
International Journal of Molecular Sciences
A series of novel 2-alkythio-4-chloro-N-[imino-(heteroaryl)methyl]benzenesulfonamide derivatives, 8–24, were synthesized in the reaction of the N-(benzenesulfonyl)cyanamide potassium salts 1–7 with the appropriate mercaptoheterocycles. All the synthesized compounds were evaluated for their anticancer activity in HeLa, HCT-116 and MCF-7 cell lines. The most promising compounds, 11–13, molecular hybrids containing benzenesulfonamide and imidazole moieties, selectively showed a high cytotoxic effect in HeLa cancer cells (IC50: 6–7 μM) and exhibited about three times less cytotoxicity against the non-tumor cell line HaCaT cells (IC50: 18–20 μM). It was found that the anti-proliferative effects of 11, 12 and 13 were associated with their ability to induce apoptosis in HeLa cells. The compounds increased the early apoptotic population of cells, elevated the percentage of cells in the sub-G1 phase of the cell cycle and induced apoptosis through caspase activation in HeLa cells. For the mos...
International Journal of Molecular Sciences, 2020
To learn more about the structure–activity relationships of (E)-3-(5-styryl-1,3,4-oxadiazol-2-yl)benzenesulfonamide derivatives, which in our previous research displayed promising in vitro anticancer activity, we have synthesized a group of novel (E)-5-[(5-(2-arylvinyl)-1,3,4-oxadiazol-2-yl)]-4-chloro-2-R1-benzenesulfonamides 7–36 as well as (E)-4-[5-styryl1,3,4-oxadiazol-2-yl]benzenesulfonamides 47–50 and (E)-2-(2,4-dichlorophenyl)-5-(2-arylvinyl)-1,3,4-oxadiazols 51–55. All target derivatives were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. The obtained results were analyzed in order to explain the influence of a structure of the 2-aryl-vinyl substituent and benzenesulfonamide scaffold on the anti-tumor activity. Compound 31, bearing 5-nitrothiophene moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 0.5, 4, and 4.5 µM, respectively. Analysis of structure-activit...
Arabian Journal of Chemistry, 2014
A series of 4-(1-aryl-5-chloro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzenesulfonamide derivatives (1-20) was synthesized and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial results indicated that compounds N-(4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino) phenylsulfonyl)-4-isopropoxy benzamide (9) and N-(4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-ylideneamino) phenylsulfonyl)-4-isopropoxybenzamide (19) were found to be the most effective ones. The anticancer results indicated that almost all the synthesized compounds were more active than the standard drug carboplatin but less active than the standard drug 5-fluorouracil (5-FU) against both the cell lines (HCT116 and RAW 264.7). 4-(1-Benzoyl-5-* Corresponding author. Tel.: +91 1262 393222; fax: +91 1262 274133.
Journal of Enzyme Inhibition and Medicinal Chemistry, 2016
A series of new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides (7-12) was synthesized starting from 2-(4-substitutedbenzylidene)-2,3-dihydro-1H-inden-1-one (1-6) and 4-hydrazinobenzenesulfonamide. The substituted benzaldehydes from which the key intermediate was prepared by introducing 2-or 4-substituents such as fluorine, hydroxy, methoxy, or the 3,4,5-trimethoxy moieties. The compounds were tested for their cytotoxicity, tumor-specificity and potential as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The 3,4,5-trimethoxy and the 4-hydroxy derivatives showed interesting cytotoxic activities, which may be crucial for further anti-tumor activity studies, whereas some of these sulfonamides strongly inhibited both human (h) cytosolic isoforms hCA I and II.
Tetrahedron Letters, 2014
Several novel N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamides derivatives were prepared as potential antiproliferative agents. The in vitro antiproliferative activity of the synthesized compounds was investigated against a panel of tumor cell lines including breast cancer cell lines (MDA-MB-231, T-47D) and neuroblastoma cell line (SK-N-MC) using MTT colorimetric assay. Etoposide, a well-known anticancer drug, was used as a positive standard drug. Among synthesized compounds, 4-methoxy-N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamide (5i) showed the highest antiproliferative activity against MDA-MB-231, T-47D, and SK-N-MC cells. Furthermore, pentafluoro derivatives 5a and 6a exhibited higher antiproliferative activity than doxorubicin against human leukemia cell line (CCRF-CEM) and breast adenocarcinoma (MDA-MB-468) cells. Structure-activity relationship studies revealed that xanthone benzenesulfonamide hybrid compounds can be used for development of new lead anticancer agents.
Molecules, 2015
A series of novel N-acyl-4-chloro-5-methyl-2-(R 1-methylthio)benzenesulfonamides 18-47 have been synthesized by the reaction of N-[4-chloro-5-methyl-2-(R 1-methylthio) benzenesulfonyl]cyanamide potassium salts with appropriate carboxylic acids. Some of them showed anticancer activity toward the human cancer cell lines MCF-7, HCT-116 and HeLa, with the growth percentages (GPs) in the range from 7% to 46%. Quantitative structure-activity relationship (QSAR) studies on the cytotoxic activity of N-acylsulfonamides toward MCF-7, HCT-116 and HeLa were performed by using topological, ring and charge descriptors based on the stepwise multiple linear regression technique (MLR). The QSAR studies revealed three predictive and statistically significant models for the investigated compounds. The results obtained with these models indicated that the anticancer activity of N-acylsulfonamides depends on topological distances, number of ring system, maximum positive charge and
Synthesis and Anti-Breast Cancer Evaluation of Novel N-(Guanidinyl)benzenesulfonamides
International Journal of Molecular Sciences, 2014
A series of 4-(substituted)-N-(guanidinyl)benzenesulfonamides bearing biologically active pyrazole, pyrimidine and pyridine moieties were prepared and evaluated for their anticancer activity against human tumor breast cell line (MCF7). These sulfonamides showed promising activity with IC 50 values ranging from 49.5 to 70.2 μM. The structure-activity relationship of the synthesized compounds was studied. Interestingly, it was found that the most potent compounds in this study were the corresponding 2-cyanoacrylate 3, 3-oxobutanoate 4, pyrazole 6, pyridine 9 and pyrazole 13. Compounds 7 and 8 are nearly as active as Doxorubicin as reference drug with (IC 50 values = 70.2, 68.1 μM), while compounds 5, 10 and 11 exhibited a moderate activity.
Synthesis and identification of heteroaromatic N-benzyl sulfonamides as potential anticancer agents, 2019
Sulfonamides are a crucial class of bioisosteres that are prevalent in a wide range of pharmaceuticals, however, the available methods for their production directly from heteroaryl aldehyde reagents remains surprisingly limited. A new approach for regioselective incorporation of a sulfonamide unit to heteroarene scaffolds has been developed and is reported within. As a result, a variety of primary benzylic N-alkylsulfonamides have been prepared via a two-step (one pot) formation from the in situ reduction of an intermediate N-sulfonyl imine under mild, practical conditions. The compounds have been screened against a variety of cell lines for cytotoxicity effects using a Cell Titer Blue assay. The cell viability investigation identifies a subset of N-benzylic sulfonamides derived from the indole scaffold to be targeted for further development into novel molecules with potential therapeutic value. The most cytotoxic of the compounds prepared, AAL-030, exhibited higher potency than other well-known anticancer agents Indisulam and ABT-751.