High-amplitude elastic solitary wave propagation in 1-D granular chains with preconditioned beads: Experiments and theoretical analysis (original) (raw)
Related papers
Characterization of wave propagation in elastic and elastoplastic granular chains
Physical Review E, 2014
For short duration impulse loadings, elastic granular chains are known to support solitary waves, while elastoplastic chains have recently been shown to exhibit two force decay regimes [Pal, Awasthi, and Geubelle, Granular Matter 15, 747 (2013).]. In this work, the dynamics of monodisperse elastic and elastoplastic granular chains under a wide range of loading conditions is studied, and two distinct response regimes are identified in each of them. In elastic chains, a short loading duration leads to a single solitary wave propagating down the chain, while a long loading duration leads to the formation of a train of solitary waves. A simple model is developed to predict the peak force and wave velocity for any loading duration and amplitude. In elastoplastic chains, wave trains form even for short loading times due to a mechanism distinct from that in elastic chains. A model based on energy balance predicts the decay rate and transition point between the two decay regimes. For long loading durations, loading and unloading waves propagate along the chain, and a model is developed to predict the contact force and particle velocity.
Solitary wave trains in granular chains: experiments, theory and simulations
Granular Matter, 2007
The features of solitary waves observed in horizontal monodisperse chain of barely touching beads not only depend on geometrical and material properties of the beads but also on the initial perturbation provided at the edge of the chain. An impact of a large striker on a monodisperse chain, and similarly a sharp decrease of bead radius in a stepped chain, generates a solitary wave train containing many single solitary waves ordered by decreasing amplitudes. We find, by simple analytical arguments, that the unloading of compression force at the chain edge has a nearly exponential decrease. The characteristic time is mainly a function involving the grains' masses and the striker mass. Numerical calculations and experiments corroborate these findings.
Wave propagation in elasto-plastic granular systems
Granular Matter, 2013
Due to the nonlinear nature of the inter-particle contact, granular chains made of elastic spheres are known to transmit solitary waves under impulse loading. However, the localized contact between spherical granules leads to stress concentration, resulting in plastic behavior even for small forces. In this work, we investigate the effects of plasticity in wave propagation in elasto-plastic granular systems. In the first part of this work, a force-displacement law between contacting elastic-perfectly plastic spheres is developed using a nonlinear finite element analysis. In the second part, this force-displacement law is used to simulate wave propagation in one-dimensional granular chains. In elasto-plastic chains, energy dissipation leads to the formation and merging of wave trains, which have characteristics very different from those of elastic chains. Scaling laws for peak force at each contact point along the chain, velocity of the leading wave, local contact and total dissipation are developed.
Solitary waves in the granular chain
Physics Reports, 2008
Solitary waves are lumps of energy. We consider the study of dynamical solitary waves, meaning cases where the energy lumps are moving, as opposed to topological solitary waves where the lumps may be static. Solitary waves have been studied in some form or the other for nearly 450 years. Subsequently, there have been many authoritative works on solitary waves. Nevertheless, some of the most recent studies reveal that these peculiar objects are far more complex than what we might have given them credit for. In this review, we introduce the physics of solitary waves in alignments of elastic beads, such as glass beads or stainless steel beads. We show that any impulse propagates as a new kind of highly interactive solitary wave through such an alignment and that the existence of these waves seems to present a need to reexamine the very definition of the concept of equilibrium. We further discuss the possibility of exploiting nonlinear properties of granular alignments to develop exciting technological applications.
Analysis of solitary wave impulses in granular chains using ultrasonic excitation
Physical review. E, 2016
The propagation of broad bandwidth solitary wave impulses, generated within granular chains by narrow bandwidth ultrasonic excitation, is studied in detail. Theoretical predictions are compared to experimental results. It is demonstrated that the observed effects result from a sum of a solitary wave traveling out from the source with a wave that reflects from the far end of the chain. It is shown that this combination, when used with an excitation in the form of a long-duration tone burst, encourages the generation of multiple impulses with a characteristic periodicity. This study shows that the properties of the chain structure and the excitation can be adjusted so as to generate ultrasonic solitary wave impulses with a high amplitude and known frequency content, which are of interest in applications such as biomedical ultrasound.
Acoustic modes induced by force chains in granular lattice
The influence of force chains on acoustic wave propagation in granular media is investigated by modeling a granular medium as a cubic lattice of particles. In this spatially periodic media, general physical arguments as well as an analytical theory indicate that, in addition to a traditional method of wave control through gap opening in an allowed frequency band, there exists an opportunity to control waves through window opening in a forbidden frequency band. Loading unconsolidated granular crystal periodically in space creates a periodic system of force chains, which modulates periodically the medium rigidity and makes possible to guide high-frequency acoustic waves in the direction initially forbidden for their propagation. The influence of the modulation period and amplitude on the spectrum of the propagating modes is investigated. Even a single force chain creates a channel for wave propagation in the forbidden frequency band.
Physical Review E, 2019
A granular chain of elastic spheres via Hertzian contact incorporates a classical nonlinear force model describing dynamical elastic solitary wave propagation. In this paper, the multiple solitary waves and their dynamic behaviors and stability in such a system are considered. An approximate KdV equation with the standard form is derived under the long-wavelength approximation and small deformation. The closed-form analytical single-and multiple-soliton solutions are obtained. The construction of the multiple-soliton solutions is analyzed by using the functional analysis. It is found that the multiple-soliton solution can be excited by the single-soliton solutions. This result is confirmed by the numerical analysis. Based on the soliton solutions of the KdV equation, the analytic solutions of multiple dark solitary waves are obtained from the original dynamic equation of the granular chain in the long-wavelength approximation. The stability of the single and multiple dark solitary wave solutions are numerically analyzed by using both split-step Fourier transform method and Runge-Kutta method. The results show that the single dark solitary wave solution is stable, and the multiple dark solitary waves are unstable.
How Hertzian Solitary Waves Interact with Boundaries in a 1D Granular Medium
Physical Review Letters, 2005
We perform measurements, numerical simulations, and quantitative comparisons with available theory on solitary wave propagation in a linear chain of beads without static preconstrain. By designing a nonintrusive force sensor to measure the impulse as it propagates along the chain, we study the solitary wave reflection at a wall. We show that the main features of solitary wave reflection depend on wall mechanical properties. Since previous studies on solitary waves have been performed at walls without these considerations, our experiment provides a more reliable tool to characterize solitary wave propagation. We find, for the first time, precise quantitative agreements.
Highly nonlinear solitary waves in heterogeneous periodic granular media
Physica D: Nonlinear …, 2009
We use experiments, numerical simulations, and theoretical analysis to investigate the propagation of highly nonlinear solitary waves in periodic arrangements of dimer (two-mass) and trimer (three-mass) cell structures in one-dimensional granular lattices. To vary the composition of the fundamental periodic units in the granular chains, we utilize beads of different materials (stainless steel, bronze, glass, nylon, polytetrafluoroethylene, and rubber). This selection allows us to tailor the response of the system based on the masses, Poisson ratios, and elastic moduli of the components. For example, we examine dimer configurations with two types of heavy particles, two types of light particles, and alternating light and heavy particles. Employing a model with Hertzian interactions between adjacent beads, we find very good agreement between experiments and numerical simulations. We find equally good agreement between these results and a theoretical analysis of the model in the long-wavelength regime that we derive for heterogeneous environments (dimer chains) and general bead interactions. Our analysis encompasses previously-studied examples as special cases and also provides key insights on the influence of heterogeneous lattices on the properties (width and propagation speed) of the nonlinear wave solutions of this system.
Elastic wave propagation in confined granular systems
Physical Review E, 2005
We present numerical simulations of acoustic wave propagation in confined granular systems consisting of particles interacting with the three-dimensional Hertz-Mindlin force law. The response to a short mechanical excitation on one side of the system is found to be a propagating coherent wavefront followed by random oscillations made of multiply scattered waves. We find that the coherent wavefront is insensitive to details of the packing: force chains do not play an important role in determining this wavefront. The coherent wave propagates linearly in time, and its amplitude and width depend as a power law on distance, while its velocity is roughly compatible with the predictions of macroscopic elasticity. As there is at present no theory for the broadening and decay of the coherent wave, we numerically and analytically study pulse-propagation in a one-dimensional chain of identical elastic balls. The results for the broadening and decay exponents of this system differ significantly from those of the random packings. In all our simulations, the speed of the coherent wavefront scales with pressure as p 1/6 ; we compare this result with experimental data on various granular systems where deviations from the p 1/6 behavior are seen. We briefly discuss the eigenmodes of the system and effects of damping are investigated as well.