Prion Strain Characterization of a Novel Subtype of Creutzfeldt-Jakob Disease (original) (raw)

Biochemical and conformational variability of human prion strains in sporadic Creutzfeldt–Jakob disease

Neuroscience Letters, 1999

The pathogenesis of prion (PrP) diseases is thought to be related to conformational changes of a normal cellular protein, PrP C , into a protease resistant protein called PrP Sc , which is infectious by itself. A dif®culty with this`protein only' hypothesis is the existence of numerous PrP strains, that require PrP Sc to have multiple conformations. Sporadic Creutzfeldt±Jakob disease (CJD), which accounts for nearly 80% of human prionoses, was reported to include at least two`strains' termed types 1 and 2 which differ by electrophoretic patterns of their proteinase K (PK)-resistant fragments (PrP27±30). We have analyzed the biochemical and structural properties of PrP Sc and PrP27±30 isolates from six sporadic CJD patients. Fourier transform-infra-red spectroscopy, PrP27±30 glycosylation patterns and studies of PK sensitivity revealed a striking heterogeneity. Furthermore, one isolate yielded a PrP27±30 fragment with a lower mobility clearly different from previously described sporadic CJD types. Although the average b-sheet content was higher among type 1 isolates, there was overlap between the two types. Our study suggests that human sporadic CJD-related prions display a signi®cant heterogeneity. q

Comparative Study of Prions in Iatrogenic and Sporadic Creutzfeldt-Jakob Disease

Journal of clinical & cellular immunology, 2014

Differentiating iatrogenic Creutzfeldt-Jakob disease (iCJD) from sporadic CJD (sCJD) would be useful for the identification and prevention of human-to-human prion transmission. Currently, the diagnosis of iCJD depends on identification of a recognized source of contamination to which patients have been exposed, in addition to fulfilling basic requirements for the establishment of diagnosis of CJD. Attempts to identify differences in clinical manifestations, neuropathological changes and pathological prion protein (PrP(Sc)) between iCJD and sCJD have been unsuccessful. In the present study, using a variety of more sophisticated methods including sucrose step gradient sedimentation, conformational stability immunoassay, protein misfolding cyclic amplification (PMCA), fragment-mapping, and transmission study, we show no significant differences in gel profiles, oligomeric state, conformational stability and infectivity of PrP(Sc) between iCJD and sCJD. However, using PMCA, we find that ...

Sporadic Creutzfeldt-Jakob disease VM1: phenotypic and molecular characterization of a novel subtype of human prion disease

Acta Neuropathologica Communications

The methionine (M)—valine (V) polymorphic codon 129 of the prion protein gene (PRNP) plays a central role in both susceptibility and phenotypic expression of sporadic Creutzfeldt-Jakob diseases (sCJD). Experimental transmissions of sCJD in humanized transgenic mice led to the isolation of five prion strains, named M1, M2C, M2T, V2, and V1, based on two major conformations of the pathological prion protein (PrPSc, type 1 and type 2), and the codon 129 genotype determining susceptibility and propagation efficiency. While the most frequent sCJD strains have been described in codon 129 homozygosis (MM1, MM2C, VV2) and heterozygosis (MV1, MV2K, and MV2C), the V1 strain has only been found in patients carrying VV. We identified six sCJD cases, 4 in Catalonia and 2 in Italy, carrying MV at PRNP codon 129 in combination with PrPSc type 1 and a new clinical and neuropathological profile reminiscent of the VV1 sCJD subtype rather than typical MM1/MV1. All patients had a relatively long durati...

Identification of Distinct N-terminal Truncated Forms of Prion Protein in Different Creutzfeldt-Jakob Disease Subtypes

Journal of Biological Chemistry, 2004

In prion diseases, the cellular prion protein (PrP C ) is converted to an insoluble and protease-resistant abnormal isoform termed PrP Sc . In different prion strains, PrP Sc shows distinct sites of endogenous or exogenous proteolysis generating a core fragment named PrP27-30. Sporadic Creutzfeldt-Jakob disease (sCJD), the most frequent human prion disease, clinically presents with a variety of neurological signs. As yet, the clinical variability observed in sCJD has not been fully explained by molecular studies relating two major types of PrP27-30 with unglycosylated peptides of 21 (type 1) and 19 kDa (type 2) and the amino acid methionine or valine at position 129. Recently, smaller C-terminal fragments migrating at 12 and 13 kDa have been detected in different sCJD phenotypes, but their significance remains unclear. By using two-dimensional immunoblot with anti-PrP antibodies, we identified two novel groups of protease-resistant PrP fragments in sCJD brain tissues. All sCJD cases with type 1 PrP27-30, in addition to MM subjects with type 2 PrP27-30, were characterized by the presence of unglycosylated PrP fragments of 16 -17 kDa. Conversely, brain homogenates from patients VV and MV with type 2 PrP27-30 contained fully glycosylated PrP fragments, which after deglycosylation migrated at 17.5-18 kDa. Interestingly, PrP species of 17.5-18 kDa matched deglycosylated forms of the C1 PrP C fragment and were associated with tissue PrP deposition as plaque-like aggregates or amyloid plaques. These data show the presence of multiple PrP Sc conformations in sCJD and, in addition, shed new light on the correlation between sCJD phenotypes and disease-associated PrP molecules.

The Residue 129 Polymorphism in Human Prion Protein Does Not Confer Susceptibility to Creutzfeldt-Jakob Disease by Altering the Structure or Global Stability of PrPC

Journal of Biological Chemistry, 2004

There are two common forms of prion protein (PrP) in humans, with either methionine or valine at position 129. This polymorphism is a powerful determinant of the genetic susceptibility of humans toward both sporadic and acquired forms of prion disease and restricts propagation of particular prion strains. Despite its key role, we have no information on the effect of this mutation on the structure, stability, folding, and dynamics of the cellular form of PrP (PrP C). Here, we show that the mutation has no measurable effect on the folding, dynamics, and stability of PrP C. Our data indicate that the 129M/V polymorphism does not affect prion propagation through its effect on PrP C ; rather, its influence is likely to be downstream in the disease mechanism. We infer that the M/V effect is mediated through the conformation or stability of disease-related PrP (PrP Sc) or intermediates or on the kinetics of their formation. The prion diseases are a group of fatal neurodegenerative diseases that include scrapie in sheep and goats; bovine spongiform encephalopathy (BSE) 1 in cattle; and Creutzfeldt-Jakob disease (CJD), Gerstmann-Strä ussler-Scheinker disease, fatal familial insomnia (FFI), and kuru in humans. The human diseases may be inherited, arise sporadically, or be acquired through exposure to infectious prions (1, 2). Although rare in humans, intense interest has focused on these diseases both because of their unique biology and because of the occurrence of variant CJD, a new form of human prion disease, and the experimental evidence that it is caused by a BSE-like prion strain (3-5). According to the "protein-only" hypothesis (6), prions are composed principally or entirely of abnormal isoforms of hostencoded prion protein (PrP) (7). The disease-related isoform, PrP Sc , is derived from its normal cellular precursor, PrP C , by a

Analysis of conformational stability of abnormal prion protein aggregates across the spectrum of Creutzfeldt-Jakob disease prions

Journal of virology, 2016

The wide phenotypic variability of prion diseases is thought to depend on the interaction of a host genotype with prion strains that have self-perpetuating biological properties enciphered in distinct conformations of the misfolded prion protein, PrP(Sc) The latter concept is largely based on indirect approaches studying the effect of proteases or denaturing agents on the physicochemical properties of PrP(Sc) aggregates. Furthermore, most data come from studies on rodent-adapted prion strains, making current understanding of the molecular basis of strains and phenotypic variability in naturally occurring diseases, especially in humans, more limited. To fill this gap, we studied the effect of guanidine hydrochloride (GdnHCl) and heating on PrP(Sc) aggregates extracted from 60 sporadic CJD and 6 variant CJD brains. While denaturation curves obtained after exposure of PrP(Sc) to increasing GndHCl concentrations showed a similar profile among the 7 CJD types analysed, PrP(Sc) exposure t...

Dissociation of pathological and molecular phenotype of variant Creutzfeldt-Jakob disease in transgenic human prion protein 129 heterozygous mice

Proceedings of the National Academy of Sciences of the United States of America, 2006

All neuropathologically confirmed cases of variant Creutzfeldt-Jakob disease (vCJD), characterized by abundant florid plaques and type 4 disease-related prion protein (PrP(Sc)) in the brain, have been homozygous for methionine at polymorphic residue 129 of PRNP. The distinctive neuropathological and molecular phenotype of vCJD can be faithfully recapitulated in Prnp-null transgenic mice homozygous for human PrP M129 but not V129, where a distinct prion strain is propagated. Here we model susceptibility of 129MV heterozygotes, the most common PRNP genotype, in transgenic mice and show that, remarkably, propagation of type 4 PrP(Sc) was not associated with characteristic vCJD neuropathology. Depending on the source of the inoculum these mice can develop four distinct disease phenotypes after challenge with bovine spongiform encephalopathy (BSE) prions or vCJD (human-passaged BSE) prions. vCJD-challenged mice had higher attack rates of prion infection than BSE-challenged recipients. Th...

Current concepts in human prion protein (Prp) misfolding, Prnp gene polymorphisms and their contribution to Creutzfeldt-Jakob Disease (CJD)

Histology and histopathology, 2007

Transmissible spongiform encephalopathies are a group of neural degenerative diseases that may be infectious, sporadic, or hereditary and are associated with an abnormally folded prion protein. Unfortunately at the current time it is not at all clear what the normal structure of the prion protein actually is or how it is toxic to cells. Extensive research on prion diseases has led to a dramatic increase in understanding of the pathogenesis of prion disorders, which will hopefully lead to the development of effective treatments. The inability to detect the disease in blood using current technology has made screening difficult. While fortunately there has been a decline in the number of clinical cases of transmissible variant CJD, evidence indicates that very long incubation periods can occur in humans so there may be a long slow, gradual epidemic. In particular, clinical cases in genotypes other than those homozygous for methionine at codon 129 of PRNP have not yet occurred, but such...

Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions

Acta Neuropathologica Communications, 2016

Introduction: Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrP Sc , a misfolded isoform of the host-encoded prion protein PrP C. Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrP Sc in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to 'mutate' conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrP Sc), to transgenic mice overexpressing either human or the VRQ allele of ovine PrP C. Results: In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrP Sc biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the 'physical' cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. Conclusions: Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of sporadic CJD upon homologous and heterologous transmission. The notion that the environment or matrix where replication is occurring is key to the selection and preferential amplification of prion substrain components raises new questions on the determinants of prion replication within and between species. These data also further interrogate on the interplay between animal and human prions.