Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity (original) (raw)

Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

2013

For bulk thermoelectrics, improvement of the figure of merit ZT to above 2 from the current values of 1.0 to 1.5 would enhance their competitiveness with alternative technologies. In recent years, the most significant improvements in ZT have mainly been due to successful reduction of thermal conductivity. However, thermal conductivity is difficult to measure directly at high temperatures. Combined measurements of thermal diffusivity, specific heat, and mass density are a widely used alternative to direct measurement of thermal conductivity. In this work, thermal conductivity is shown to be the factor in the calculation of ZT with the greatest measurement uncertainty. The International Energy Agency (IEA) group, under the implementing agreement for Advanced Materials for Transportation (AMT), has conducted two international round-robins since 2009. This paper, part II of our report on the international round-robin testing of transport properties of bulk bismuth telluride, focuses on thermal diffusivity, specific heat, and thermal conductivity measurements.

Electronic Transport in Thermoelectric Bismuth Telluride

2012

An experimental investigation of the electronic transport properties of bismuth telluride nanocomposite materials is presented. The primary transport measurements are electrical conductivity, Seebeck coefficient and Hall effect. An experimental apparatus for measuring Hall effect and electrical conductivity was designed, constructed and tested. Seebeck coefficient measurements were performed on a commercial instrument. The Hall effect and Seebeck coefficient measurements are two of the most important tools for characterizing thermoelectric materials and are widely used in the semiconductor industry for determining carrier types, carrier concentration and mobility. Further, these transport parameters are used to determine the thermal to electrical conversion efficiency of a thermoelectric material. The Boltzmann transport equation was used to analyze the Seebeck coefficient, carrier mobility and electrical conductivity as a function of carrier concentration for eleven samples. The relationship between the electronic transport and material/composite composition is discussed.

Extrapolation of Transport Properties and Figure of Merit of a Thermoelectric Material

Energies, 2015

The accurate determination of the thermoelectric properties of a material becomes increasingly difficult as the temperature rises. However, it is the properties at elevated temperatures that are important if thermoelectric generator efficiency is to be improved. It is shown that the dimensionless figure of merit, ZT, might be expected to rise with temperature for a given material provided that minority carrier conduction can be avoided. It is, of course, also necessary that the material should remain stable over the whole operating range. We show that the prediction of high temperature properties in the extrinsic region is possible if the temperature dependence of carrier mobility and lattice thermal conductivity are known. Also, we show how the undesirable effects arising from mixed or intrinsic conduction can be calculated from the energy gap and the relative mobilities of the electrons and the positive holes. The processes involved are discussed in general terms and are illustrated for different systems. These comprise the bismuth telluride alloys, silicon-germanium alloys, magnesium-silicon-tin and higher manganese silicide.

International Round-Robin Study of the Thermoelectric Transport Properties of an n-Type Half-Heusler Compound from 300 K to 773 K

Journal of Electronic Materials, 2015

International transport property-measurement round-robins have been conducted by the thermoelectric annex under the International Energy Agency (IEA) Implementing Agreement on Advanced Materials for Transportation (AMT). Two previous round-robins used commercially available bismuth telluride as the test material, with the objectives of understanding measurement issues and developing standard testing procedures. This round-robin extended the measurement temperature range to 773 K. It was designed to meet the increasing demands for reliable transport data for thermoelectric materials used for power-generation applications. Eleven laboratories from six IEA-AMT member countries participated in the study. A half-Heusler (n-type) material prepared by GMZ Energy was selected for the round-robin. The measured transport properties had a narrower distribution of uncertainty than previous round-robin results. The study intentionally included multiple testing methods and instrument types. Over the full temperature range, the measurement discrepancies for the figure of merit, ZT, in this round-robin were ±11.5 to ±16.4% from the averages.

Correlation between microstructure and drastically reduced lattice thermal conductivity in bismuth telluride/bismuth nanocomposites for high thermoelectric figure of merit

The concept of nanocomposite/nanostructuring in thermoelectric materials has been proven to be an effective paradigm for optimizing the high thermoelectric performance primarily by reducing the thermal conductivity. In this work, we have studied the microstructure details of nanocomposites derived by incorporating a semi-metallic Bi nanoparticle phase in Bi 2 Te 3 matrix and its correlation mainly with the reduction in the lattice thermal conductivity. Incorporating Bi inclusion in Bi 2 Te 3 bulk thermoelectric material results in a substantial increase in the power factor and simultaneous reduction in the thermal conductivity. The main focus of this work is the correlation of the microstructure of the composite with the reduction in thermal conductivity. Thermal conductivity of the matrix and nanocomposites was derived from the thermal diffusivity measurements performed from room temperature to 150 1C. Interestingly, significant reduction in total thermal conductivity of the nanocomposite was achieved as compared to that of the matrix. A detailed analysis of high-resolution transmission electron microscope images reveals that this reduction in the thermal conductivity can be ascribed to the enhanced phonon scattering by distinct microstructure features such as interfaces, grain boundaries, edge dislocations with dipoles, and strain field domains.

Electrical and thermal transport property studies of high-temperature thermoelectric materials

1984

The first year of this research emphasized the study of electronically conducting oxides with varied transport characteristics, an evaluation of theoretical models, and the determination of a high-temperature transport property data base. Oxide systems based on SnO2-In2O3, (La, Y) (Mg,Ca,Sr) CrO3, HfO2-RxOy-In3O3 and La(Sr)MnO3 were selected for initial studies and represent different crystallographic/defect structures and transport characteristics. The electrical conductivity, Seeback coefficient and thermal conductivity for these oxides are being measured and have provided a preliminary data base for evaluating transport properties and the figure of merit. The purpose of this report is to describe the technical results obtained during the first year's study of high-temperature thermoelectric materials. The scope of the research is (1) to develop theoretical models for electrical, thermal, and thermoelectric behavior of refractory oxide materials, (2) to determine electrical t...

Revisiting the Reduction of Thermal Conductivity in Nano- to Micro-Grained Bismuth Telluride: The Importance of Grain-Boundary Thermal Resistance

Engineered Science, 2021

Nanograined bulk alloys based on bismuth telluride (Bi2Te3) are the dominant materials for roomtemperature thermoelectric applications. In numerous studies, existing bulk phonon mean free path (MFP) spectra predicted by atomistic simulations suggest sub-100 nm grain sizes are necessary to reduce the lattice thermal conductivity by decreasing phonon MFPs. This is in contrast with available experimental data, where a remarkable thermal conductivity reduction is observed even for micro-grained Bi2Te3 samples. In this work, first-principles phonon MFPs along both the inplane and cross-plane directions are re-computed for bulk Bi2Te3. These phonon MFPs can explain new and existing experimental data on flake-like Bi2Te3 nanostructures with various thicknesses. For polycrystalline Bi2Te3-based materials, a better explanation of the experimental data requires

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys

Science, 2008

The dimensionless thermoelectric figure-of-merit (ZT) in bulk bismuth antimony telluride alloys has remained around 1 for more than 50 years. Here we show that a peak ZT of 1.4 at 100°C can be achieved in p-type nanocrystalline bismuth antimony telluride bulk alloy. These nanocrystalline bulk materials were made by hotpressing nanopowders ball-milled from crystalline ingots under inert conditions. Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects. More importantly, ZT is about 1.2 at room temperature and 0.8 at 250°C, which makes these materials useful for cooling and power generation. Cooling devices that use these materials have produced high temperature differences of 86°, 106°, and 119°C with hot-side temperatures set at 50°, 100°, and 150°C, respectively. This discovery sets the stage for use of a new nanocomposite approach in developing high performance low-cost bulk thermoelectric materials.

Measurement of Thermal Conductivity Using Steady-State Isothermal Conditions and Validation by Comparison with Thermoelectric Device Performance

Journal of Electronic Materials, 2012

A new technique for measuring thermal conductivity with significantly improved accuracy is presented. By using the Peltier effect to counterbalance an imposed temperature difference, a completely isothermal, steady-state condition can be obtained across a sample. In this condition, extraneous parasitic heat flows that would otherwise cause error can be eliminated entirely. The technique is used to determine the thermal conductivity of p-type and n-type samples of (Bi,Sb) 2 (Te,Se) 3 materials, and thermal conductivity values of 1.47 W/m K and 1.48 W/m K are obtained respectively. To validate this technique, those samples were assembled into a Peltier cooling device. The agreement between the Seebeck coefficient measured individually and from the assembled device were within 0.5%, and the corresponding thermal conductivity was consistent with the individual measurements with less than 2% error.