Systematic Review and Meta-analysis of STM and WM in Long-Term CI Users (original) (raw)
Related papers
Assessing Cognitive Abilities in High-Performing Cochlear Implant Users
Frontiers in Neuroscience, 2019
Despite being considered one of the most successful neural prostheses, cochlear implants (CIs) provide recipients with a wide range of speech perception performance. While some CI users can understand speech in the absence of visual cues, other recipients exhibit more limited speech perception. Cognitive skills have been documented as a contributor to complex auditory processing, such as language understanding; however, there are no normative data for existing standardized clinical tests assessing cognitive abilities in CI users. Here, we assess the impact of modality of presentation (i.e., auditory-visual versus visual) for the administration of working memory tests in high-performing CI users in addition to measuring processing speed, cognitive efficiency and intelligence quotient (IQ). Second, we relate performance on these cognitive measures to clinical CI speech perception outcomes. Methods: Twenty one post-lingually deafened, high-performing, adult CI users [age range: 52-88 years; 3 unilateral CI, 13 bimodal (i.e., CI with contralateral hearing aid), 5 bilateral CI] with clinical speech perception scores (i.e., AzBio sentences in quiet for the first-ear CI) of ≥60% were recruited. A cognitive test battery assessing auditoryvisual working memory (AVWM), visual working memory (VWM), processing speed, cognitive efficiency and IQ was administered, in addition to clinical measures of speech perception in quiet (i.e., AzBio sentences in quiet). AzBio sentences were assessed in two conditions: first-ear CI only, and best-aided everyday wearing condition. Subjects also provided self-reported measures of performance and benefit from their CI using standardized materials, including the Glasgow Benefit Inventory (GBI) and the Nijmegen Cochlear Implant questionnaire (NCIQ). Results: High-performing CI users demonstrated greater VWM than AVWM recall. VWM was positively related to AzBio scores when measured in the first-ear CI only. AVWM, processing speed, cognitive efficiency, and IQ did not relate to either measure of speech perception (i.e., first-ear CI or best-aided conditions). Subjects' self-reported benefit as measured by the GBI predicted best-aided CI speech perception performance. Conclusion: In high-performing CI recipients, visual presentation of working memory tests may improve our assessment of cognitive function.
Visual working memory span in adults with cochlear implants: Some preliminary findings
World journal of otorhinolaryngology - head and neck surgery, 2017
Neurocognitive functions, specifically verbal working memory (WM), contribute to speech recognition in postlingual adults with cochlear implants (CIs) and normal-hearing (NH) listener shearing degraded speech. Three hypotheses were tested: (1) WM accuracy as assessed using three visual span measures - digits, objects, and symbols - would correlate with recognition scores for spectrally degraded speech (through a CI or when noise-vocoded); (2) WM accuracy would be best for digit span, intermediate for object span, and lowest for symbol span, due to the increasing cognitive demands across these tasks. Likewise, response times, relating to processing demands, would be shortest for digit span, intermediate for object span, and longest for symbol span; (3) CI users would demonstrate poorer and slower performance than NH peers on WM tasks, as a result of less efficient verbally mediated encoding strategies associated with a period of prolonged auditory deprivation. Cross-sectional study o...
Ear and Hearing, 2015
To determine whether early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions that differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory using phonological and linguistic strategies during memory tasks.
Verbal working memory and inhibition‐concentration in adults with cochlear implants
Laryngoscope Investigative Otolaryngology, 2017
ObjectivesNeurocognitive functions contribute to speech recognition in postlingual adults with cochlear implants (CIs). In particular, better verbal working memory (WM) on modality‐specific (auditory) WM tasks predicts better speech recognition. It remains unclear, however, whether this association can be attributed to basic underlying modality‐general neurocognitive functions, or whether it is solely a result of the degraded nature of auditory signals delivered by the CI. Three hypotheses were tested: 1) Both modality‐specific and modality‐general tasks of verbal WM would predict scores of sentence recognition in speech‐shaped noise; 2) Basic modality‐general neurocognitive functions of controlled fluency and inhibition‐concentration would predict both modality‐specific and modality‐general verbal WM; and 3) Scores on both tasks of verbal WM would mediate the effects of more basic neurocognitive functions on sentence recognition.Study DesignCross‐sectional study of 30 postlingual a...
Verbal Processing Speed and Executive Functioning in Long-Term Cochlear Implant Users
Purpose: The purpose of this study was to report how verbal rehearsal speed (VRS), a form of covert speech used to maintain verbal information in working memory, and another verbal processing speed measure, perceptual encoding speed, are related to 3 domains of executive function (EF) at risk in cochlear implant (CI) users: verbal working memory, fluency-speed, and inhibition-concentration. Method: EF, speech perception, and language outcome measures were obtained from 55 prelingually deaf, long-term CI users and matched controls with normal hearing (NH controls). Correlational analyses were used to assess relations between VRS (articulation rate), perceptual encoding speed (digit and color naming), and the outcomes in each sample. Results: CI users displayed slower verbal processing speeds than NH controls. Verbal rehearsal speed was related to 2 EF domains in the NH sample but was unrelated to EF outcomes in CI users. Perceptual encoding speed was related to all EF domains in both groups. Conclusions: Verbal rehearsal speed may be less influential for EF quality in CI users than for NH controls, whereas rapid automatized labeling skills and EF are closely related in both groups. CI users may develop processing strategies in EF tasks that differ from the covert speech strategies routinely employed by NH individuals.
Trials, 2013
Background: One in ten people aged between 55 to 74 years have a significant hearing impairment in their better hearing ear (as defined by audiometric hearing thresholds). However, it is becoming increasingly clear that the challenges faced by older listeners cannot be explained by the audiogram alone. The ability for people with hearing loss to use cognition to support speech perception allows for compensation of the degraded auditory input. This in turn offers promise for new cognitive-based rehabilitative interventions. Working memory is known to be highly associated with language comprehension and recent evidence has shown significant generalization of learning from trained working memory tasks to improvements in sentence-repetition skills of children with severe to profound hearing loss. This evidence offers support for further investigation into the potential benefits of working memory training to improve speech perception abilities in other hearing impaired populations.
Ear and hearing, 2017
Despite the importance of verbal learning and memory in speech and language processing, this domain of cognitive functioning has been virtually ignored in clinical studies of hearing loss and cochlear implants in both adults and children. In this article, we report the results of two studies that used a newly developed visually based version of the California Verbal Learning Test-Second Edition (CVLT-II), a well-known normed neuropsychological measure of verbal learning and memory. The first study established the validity and feasibility of a computer-controlled visual version of the CVLT-II, which eliminates the effects of audibility of spoken stimuli, in groups of young normal-hearing and older normal-hearing (ONH) adults. A second study was then carried out using the visual CVLT-II format with a group of older postlingually deaf experienced cochlear implant (ECI) users (N = 25) and a group of ONH controls (N = 25) who were matched to ECI users for age, socioeconomic status, and n...
Frontiers in Neuroscience, 2018
To compare cognitive functioning among experienced, unilateral cochlear implant (CI) recipients and normal-hearing (NH) controls by means of the Repeatable Battery for the Assessment of Neuropsychological Status for Hearingimpaired individuals (RBANS-H). Methods: Sixty-one post-lingually and bilaterally severely hearing-impaired CI recipients (median age: 71.0, range: 58.3 to 93.9 years) with at least 1 year of CI experience (median: 12.4, range: 1.1 to 18.6 years) and 81 NH control participants (median age: 69.9, range: 50.1 to 87.1 years) took part in this cross-sectional study. The RBANS-H was performed, as well as an audiometric assessment, including best-aided speech audiometry in quiet (monosyllabic words) and in noise (Leuven Intelligibility Sentences test). Results: The RBANS-H performances of the CI recipients (mean: 88.1 ± 14.9) were significantly poorer than the those of the NH participants (mean: 100.5 ± 13.2), with correction of age, sex, and education differences (general linear model: p = 0.001). The mean difference, corrected for the effects of these three demographic factors, was 8.8 (± 2.5) points. Additionally, in both groups, a significant correlation was established between overall cognition and speech perception, both in quiet and in noise, independently of age. Conclusion: Experienced, unilateral CI recipients present subnormal cognitive functioning, beyond the effect of age, sex and education. This has implications for
Audiology Research
Objectives: The present study aimed to investigate in a group of elderly CI users working memory and attention, conventionally considered as predictors of better CI performance and to try to disentangle the effects of these cognitive domains on speech perception, finding potential markers of cognitive decline related to audiometric findings. Methods Thirty postlingually deafened CI users aged >60 underwent an audiological evaluation followed by a cognitive assessment of attention and verbal working memory. A correlation analysis was performed to evaluate the associations between cognitive variables while a simple regression investigated the relationships between cognitive and audiological variables. Comparative analysis was performed to compare variables on the basis of subjects’ attention performance. Results: Attention was found to play a significant role in sound field and speech perception. Univariate analysis found a significant difference between poor and high attention per...
Otology & Neurotology
Objective: To evaluate cognitive change in severely hearing-impaired older adults after cochlear implantation. Study Design: Prospective, longitudinal cohort study with assessments before, and at 6 and 12 months after implantation. Patients: Twenty older adults (median age: 71.5 yr). Main Outcome Measures: Change in the Repeatable Battery for the Assessment of Neuropsychological Status for Hearing-impaired individuals (RBANS-H) total score and subdomain scores were used to assess cognitive evolution. In addition, change in best-aided speech audiometry in quiet (monosyllabic words) and in noise (Leuven Intelligibility Sentences Test [LIST]) was examined, as well as patientreported measures of health-related quality of life (Nijmegen Cochlear Implant Questionnaire [NCIQ]), self-perceived hearing disability (Speech, Spatial, and Qualities of hearing Scale-12 [SSQ12]), sound quality (Hearing Implant Sound Quality Index-19 [HISQUI19]), and states of anxiety and depression (Hospital Anxiety and Depression Scale [HADS]). Results: The RBANS-H total scores improved significantly after 12 months cochlear implant (CI) usage (p < 0.001). At subdomain level, significant improvements were observed in the immediate and delayed memory domain (p ¼ 0.005 and p ¼ 0.002, respectively), and to a lesser extent also in the attention domain (p ¼ 0.047). Furthermore, speech perception in quiet and in noise improved significantly after 6 months and remained stable after 12 months. Similarly, a significant improvement was observed on all patient-reported measures after 6 months of CI usage. These results remained stable after 12 months, except for the HADS. Conclusions: A significant improvement in overall cognition after 12 months of CI usage was established. However, future research is imperative to further disentangle possible practice effects from the effects of the cochlear implantation. The significant, positive effect of cochlear implantation on speech perception and patient-reported measures was confirmed.