Localization of mRNAs for subfamily of guanine nucleotide-exchange proteins (GEP) for ARFs (ADP-ribosylation factors) in the brain of developing and mature rats under normal and postaxotomy conditions (original) (raw)

Localization of mRNAs for six ARFs (ADP-ribosylation factors) in the brain of developing and adult rats and changes in the expression in the hypoglossal nucleus after its axotomy

Molecular Brain Research, 2001

ADP-ribosylation factors (ARFs) play crucial roles in the intracellular vesicular transport and in regulation of phospholipid-modifying enzyme activities and cytoskeletons. Using in situ hybridization histochemistry, the gene expression for six isoforms of ARF was examined during normal development of rats and in the hypoglossal nucleus following its axotomy. In the embryonic brain, the expression for ARF-1,-4,-5,-6 mRNAs was distinct in the ventricular germinal zone while that for ARF-3,-4,-5 in the mantle zone. In early postnatal brain, the expression for six ARFs was seen widely in various loci of the gray matter with different intensity, and the expression of ARF-4,-5,-6 mRNAs was evident in the cerebellar external granule cell layer. In the adult brain, the gene expression for all ARF isoforms decreased more or less in most gray matters and the distinct expression was maintained mainly in the hippocampal and dentate neuronal layers and cerebellar cortex. The expression levels of ARF-2 and-4 mRNAs in affected hypoglossal nucleus increased after 24 h up to 7 days following axotomy of the hypoglossal nerve, while no such changes were seen in the expression levels for the other ARFs. The present findings suggest that ARFs are differentially involved in some processes essential to nerve regeneration as well as neuronal differentiation and maturation.

Identification of a neuron-specific human gene, KIAA1110, that is a guanine nucleotide exchange factor for ARF1

Biochemical and Biophysical Research Communications, 2007

To identify neuron-specific genes, we performed gene expression profiling, cDNA microarray and in silico ESTs (expressed sequence tags) analyses. We identified a human neuron-specific gene, KIAA1110 (homologue of rat synArfGEF (Po)), that is a member of the guanine nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF). RT-PCR analysis showed that the KIAA1110 gene was expressed specifically in the brain among adult human tissues, whereas no apparent expression was observed in immature neural tissues/cells, such as fetal brain, glioma tissues/cells, and neural stem/precursor cells (NSPCs). The KIAA1110 protein was shown to be expressed in mature neurons but not in undifferentiated NSPCs. Immunohistochemical analysis also showed that KIAA1110 was expressed in neurons of the human adult cerebral cortex. Furthermore, the pull-down assay revealed that KIAA1110 has a GEF activity toward ARF1 that regulates transport along the secretion pathway. These results suggest that KIAA1110 is expressed specifically in mature neurons and may play an important role in the secretion pathway as a GEF for ARF1.

Expression of the guanine nucleotide exchange factor, mr-gef, is regulated during the differentiation of specific subsets of telencephalic neurons

Developmental Brain Research, 2003

We have performed a screen combining subtractive hybridization with PCR to isolate genes that are regulated when neuroepithelial (NE) cells differentiate into neurons. From this screen, we have isolated a number of known genes that have not previously been associated with neurogenesis, together with several novel genes. Here we report that one of these genes, encoding a guanine nucleotide exchange factor (GEF), is regulated during the differentiation of distinct neuronal populations. We have cloned both rat and mouse GEF genes and shown that they are orthologs of the human gene, MR-GEF, which encodes a GEF that specifically activates the small GTPase, Rap1. We have therefore named the rat gene rat mr-gef (rmr-gef) and the mouse gene mouse mr-gef (mmr-gef). Here, we will collectively refer to these two rodent genes as mr-gef. Expression studies show that mr-gef is expressed by young neurons of the developing rodent CNS but not by progenitor cells in the ventricular zone (VZ). The expression pattern of mr-gef during early telencephalic neurogenesis is strikingly similar to that of GABA and the LIM homeobox gene Lhx6, a transcription factor expressed by GABAergic interneurons generated in the ventral telencephalon, some of which migrate into the cortex during development. These observations suggest that mr-gef encodes a protein that is part of a signaling pathway involved in telencephalic neurogenesis; particularly in the development of GABAergic interneurons.

Brain-specific potential guanine nucleotide exchange factor for Arf, synArfGEF (Po), is localized to postsynaptic density

Journal of Neurochemistry, 2004

We cloned from a rat brain cDNA library a novel cDNA and named it a potential synaptic guanine nucleotide exchange factor (GEF) for Arf (synArfGEF (Po)) (GenBank Accession no. AB057643) based on its domain structure and localization. The cloned gene was 7410 bases long with a 3585-bp coding sequence encoding a protein of 1194 amino acids. The deduced protein contained a coiled-coil structure in the N-terminal portion followed by Sec7 and Plekstrin homology (PH) domains. Thus, the protein was a member of the Sec7 family of proteins, GEFs. Conservation of the ADP-ribosylation factor (Arf)-binding sequence suggested that the protein was a GEF for Arf. The gene was expressed specifically in the brain, where it exhibited region-specific expression. The protein was highly enriched in the postsynaptic density (PSD) fraction prepared from the rat forebrain. Uniquely, the protein interacted with PSD-95, SAP97 and Homer/Vesl 1/PSD-Zip45 via its C-terminal PDZ-binding motif and co-localized with these proteins in cultured cortical neurons. These results supported its localization in the PSD. The postsynaptic localization was also supported by immunohistochemical examination of the rat brain. The mRNA for the synArfGEF was also localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the postsynaptic compartments. These results suggest a postsynaptic role of synArfGEF in the brain.

Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex

Nature Genetics, 2004

Disruption of human neural precursor proliferation can give rise to a small brain (microcephaly), and failure of neurons to migrate properly can lead to an abnormal arrest of cerebral cortical neurons in proliferative zones near the lateral ventricles (periventricular heterotopia). Here we show that an autosomal recessive condition characterized by microcephaly and periventricular heterotopia 1 maps to chromosome 20 and is caused by mutations in the gene ADP-ribosylation factor guanine nucleotide-exchange factor-2 (ARFGEF2). By northernblot analysis, we found that mouse Arfgef2 mRNA levels are highest during embryonic periods of ongoing neuronal proliferation and migration, and by in situ hybridization, we found that the mRNA is widely distributed throughout the embryonic central nervous system (CNS). ARFGEF2 encodes the large (>200 kDa) brefeldin A (BFA)-inhibited GEF2 protein (BIG2), which is required for vesicle and membrane trafficking from the trans-Golgi network (TGN). Inhibition of BIG2 by BFA, or by a dominant negative ARFGEF2 cDNA, decreases cell proliferation in vitro, suggesting a cell-autonomous regulation of neural expansion. Inhibition of BIG2 also disturbed the intracellular localization of such molecules as E-cadherin and βcatenin by preventing their transport from the Golgi apparatus to the cell surface. Our findings show that vesicle trafficking is an important regulator of proliferation and migration during human cerebral cortical development.

Somatodendritic localization of the mRNA for EFA6A, a guanine nucleotide exchange protein for ARF6, in rat hippocampus and its involvement in dendritic formation

European Journal of Neuroscience, 2004

EFA6A is a guanine nucleotide exchange protein (GEP) that can speci®cally activate ADP-ribosylation factor 6 (ARF6) in vitro. A recent study has demonstrated that ARF6 is involved in the dendritic formation of developing hippocampal neurons [Hernandez-Deviez et al. (2002) Nature Neurosci., 5, 623±624]. This study examined a potential role for EFA6A in hippocampal development in Wistar rats. Our results provided de®nitive evidence for somatodendritic localization of EFA6A mRNA in both cultured and in vivo hippocampal neurons by nonradioactive in situ hybridization. During postnatal development, EFA6A mRNA was dramatically increased and its dendritic localization was most evident between P7 and P14. In contrast, ARF6 mRNA was con®ned to the neuronal layers of the hippocampus throughout development. In addition, the overexpression of a GEP-defective mutant of EFA6A enhanced the dendritic formation of the primary hippocampal neurons. The present ®ndings suggest that EFA6A is intimately involved in the regulation of the dendritic development of hippocampal neurons. P < 0.001; Student's t-test, compared with the control vector. Scale bar, 10 mm (A).

Temporal and spatial expression of NGF receptor mRNA during postnatal rat brain development analyzed by in situ hybridization

Developmental Brain Research, 1991

The expression of nerve growth factor (NGF) receptor mRNA was examined in the rat brain during postnatal development using in situ hybridization. Cells expressing NGF receptor mRNA were detected in the basal forebrain at all ages examined, with a peak in expression at 2 weeks of age. NGF receptor mRNA was further demonstrated to be expressed transiently in several bralnstem nuclei. Expression of NGF receptor mRNA was high at postnatal day (P) 1 and 1 week of age in the facial and abducens nuclei, but was undeteetable in the facial nucleus by 2 weeks of age. In the abducens nucleus, a few labeled cells were still present at 2 weeks of age, but absent by 3 weeks. In the cerebellum, a strong signal was present at P1 and 1 week of age which clearly diminished by 2 weeks and disappeared by 3 weeks of age. The labeled cells in the cerebellum had the size and morphology of developing Purkinje cells. These data suggest that the population of NGF-responsive cells in the brain is more widespread during development than in the adult, and that the trophic requirements of specific brain regions are altered with maturity.

ARF6 Regulates Neuron Differentiation through Glucosylceramide Synthase

PLOS ONE, 2013

The small GTPase ADP ribosylation factor 6 (ARF6) mediates endocytosis and has in addition been shown to regulate neuron differentiation. Here we investigated whether ARF6 promotes differentiation of Neuro-2a neuronal cells by modifying the cellular lipid composition. We showed that knockdown of ARF6 by siRNA in Neuro-2a cells increased neuronal outgrowth as expected. ARF6 knockdown also resulted in increased glucosylceramide levels and decreased sphingomyelin levels, but did not affect the levels of ceramide or phospholipids. We speculated that the ARF6 knockdown-induced increase in glucosylceramide was caused by an effect on glucosylceramide synthase and, in agreement, showed that ARF6 knockdown increased the mRNA levels and activity of glucosylceramide synthase. Finally, we showed that incubation of Neuro-2a cells with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) normalized the increased neuronal outgrowth induced by ARF6 knockdown. Our results thus show that ARF6 regulates neuronal differentiation through an effect on glucosylceramide synthase and glucosylceramide levels.

High abundance of ArfGAP1 found in the mossy fibers in hilus of the dentate gyrus region of the mouse brain

PloS one, 2017

The Arf GTPase-activating protein ArfGAP1 and its brain-specific isoform ArfGAP1B play an important role in neurotransmission. Here we analyzed the distribution of ArfGAP1 in the mouse brain. We found high levels of ArfGAP1 in the mouse dentate gyrus where it displayed especially elevated level in the polymorph layer (hilus). Importantly, the ArfGAP1 signal follows the pathway of the granular cell axons so-called mossy fibers which extend from the dentate gyrus to CA3 via stratum lucidum and partially stratum oriens. Additionally, we identified differential expression of ArfGAP1 in the isocortex. Thus, staining with anti-ArfGAP1 antibodies allows distinction between cortical cell layers 1, 2, 3 and 5 from 4 and 6. Taken together, our data suggest that ArfGAP1 can be used as a specific marker of the dentate mossy fibers and as for visualization of cortical layers in immunohistochemical studies.

A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1

Proceedings of the National Academy of Sciences, 1999

ADP ribosylation factors (ARFs) represent a family of small monomeric G proteins that switch from an inactive, GDP-bound state to an active, GTP-bound state. One member of this family, ARF6, translocates on activation from intracellular compartments to the plasma membrane and has been implicated in regulated exocytosis in neuroendocrine cells. Because GDP release in vivo is rather slow, ARF activation is facilitated by specific guanine nucleotide exchange factors like cytohesin-1 or ARNO. Here we show that msec7-1, a rat homologue of cytohesin-1, translocates ARF6 to the plasma membrane in living cells. Overexpression of msec7-1 leads to an increase in basal synaptic transmission at the Xenopus neuromuscular junction. msec7-1-containing synapses have a 5-fold higher frequency of spontaneous synaptic currents than control synapses. On stimulation, the amplitudes of the resulting evoked postsynaptic currents of msec7-1-overexpressing neurons are increased as well. However, further stimulation leads to a decline in amplitudes approaching the values of control synapses. This transient effect on amplitude is strongly reduced on overexpression of msec7-1E157K, a mutant incapable of translocating ARFs. Our results provide evidence that small G proteins of the ARF family and activating factors like msec7-1 play an important role in synaptic transmission, most likely by making more vesicles available for fusion at the plasma membrane.