Diversify and Match: A Domain Adaptive Representation Learning Paradigm for Object Detection (original) (raw)

Targeted adversarial discriminative domain adaptation

Geospatial Informatics XI, 2021

Domain adaptation is a technology enabling aided target recognition and other algorithms for environments and targets with data or labeled data that is scarce. Recent advances in unsupervised domain adaptation have demonstrated excellent performance but only when the domain shift is relatively small. We proposed targeted adversarial discriminative domain adaptation (T-ADDA), a semi-supervised domain adaptation method that extends the ADDA framework. By providing at least one labeled target image per class, used as a cue to guide the adaption, T-ADDA significantly boosts the performance of ADDA and is applicable to the challenging scenario in which the sets of targets in the source and target domains are not the same. The efficacy of T-ADDA is demonstrated by cross-domain, cross-sensor, and cross-target experiments using the common digits datasets and several aerial image datasets. Results demonstrate an average increase of 15% improvement with T-ADDA over ADDA using just a few labeled images when adapting to a small domain shift and afforded a 60% improvement when adapting to large domain shifts. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

Multi-Adversarial Domain Adaptation

2018

Recent advances in deep domain adaptation reveal that adversarial learning can be embedded into deep networks to learn transferable features that reduce distribution discrepancy between the source and target domains. Existing domain adversarial adaptation methods based on single domain discriminator only align the source and target data distributions without exploiting the complex multimode structures. In this paper, we present a multi-adversarial domain adaptation (MADA) approach, which captures multimode structures to enable fine-grained alignment of different data distributions based on multiple domain discriminators. The adaptation can be achieved by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Empirical evidence demonstrates that the proposed model outperforms state of the art methods on standard domain adaptation datasets.

Conditional Adversarial Domain Adaptation

2018

Adversarial learning has been embedded into deep networks to learn disentangled and transferable representations for domain adaptation. Existing adversarial domain adaptation methods may struggle to align different domains of multimodal distributions that are native in classification problems. In this paper, we present conditional adversarial domain adaptation, a principled framework that conditions the adversarial adaptation models on discriminative information conveyed in the classifier predictions. Conditional domain adversarial networks (CDANs) are designed with two novel conditioning strategies: multilinear conditioning that captures the cross-covariance between feature representations and classifier predictions to improve the discriminability, and entropy conditioning that controls the uncertainty of classifier predictions to guarantee the transferability. Experiments testify that the proposed approach exceeds the state-of-the-art results on five benchmark datasets.

Towards Category and Domain Alignment: Category-Invariant Feature Enhancement for Adversarial Domain Adaptation

2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021

Adversarial domain adaptation has made impressive advances in transferring knowledge from the source domain to the target domain by aligning feature distributions of both domains. These methods focus on minimizing domain divergence and regard the adaptability, which is measured as the expected error of the ideal joint hypothesis on these two domains, as a small constant. However, these approaches still face two issues: (1) Adversarial domain alignment distorts the original feature distributions, deteriorating the adaptability; (2) Transforming feature representations to be domain-invariant needs to sacrifice domain-specific variations, resulting in weaker discriminability. In order to alleviate these issues, we propose category-invariant feature enhancement (CIFE), a general mechanism that enhances the adversarial domain adaptation through optimizing the adaptability. Specifically, the CIFE approach introduces category-invariant features to boost the discriminability of domain-invariant features with preserving the transferability. Experiments show that the CIFE could improve upon representative adversarial domain adaptation methods to yield state-of-the-art results on five benchmarks.

Incremental Multi-Target Domain Adaptation for Object Detection with Efficient Domain Transfer

ArXiv, 2021

Techniques for multi-target domain adaptation (MTDA) seek to adapt a recognition model such that it can generalize well across multiple target domains. While several successful techniques have been proposed for unsupervised single-target domain adaptation (STDA) in object detection, adapting a model to multiple target domains using unlabeled image data remains a challenging and largely unexplored problem. Key challenges include the lack of bounding box annotations for target data, knowledge corruption, and the growing resource requirements needed to train accurate deep detection models. The later requirements are augmented by the need to retraining a model with previous-learned target data when adapting to each new target domain. Currently, the only MTDA technique in literature for object detection relies on distillation with a duplicated model to avoid knowledge corruption but does not leverage the source-target feature alignment after UDA. To address these challenges, we propose a...

Adapting Object Detectors with Conditional Domain Normalization

Computer Vision – ECCV 2020

Real-world object detectors are often challenged by the domain gaps between different datasets. In this work, we present the Conditional Domain Normalization (CDN) to bridge the domain distribution gap. CDN is designed to encode different domain inputs into a shared latent space, where the features from different domains carry the same domain attribute. To achieve this, we first disentangle the domain-specific attribute out of the semantic features from source domain via a domain embedding module, which learns a domain-vector to characterize the domain attribute information. Then this domain-vector is used to encode the features from target domain through a conditional normalization, resulting in different domains' features carrying the same domain attribute. We incorporate CDN into various convolution stages of an object detector to adaptively address the domain shifts of different level's representation. In contrast to existing adaptation works that conduct domain confusion learning on semantic features to remove domainspecific factors, CDN aligns different domain distributions by modulating the semantic features of target domains conditioned on the learned domain-vector of the source domain. Extensive experiments show that CDN outperforms existing methods remarkably on both real-to-real and synthetic-to-real adaptation benchmarks, including 2D image detection and 3D point cloud detection.

Class Distribution Alignment for Adversarial Domain Adaptation

arXiv (Cornell University), 2020

Most existing unsupervised domain adaptation methods mainly focused on aligning the marginal distributions of samples between the source and target domains. This setting does not sufficiently consider the class distribution information between the two domains, which could adversely affect the reduction of domain gap. To address this issue, we propose a novel approach called Conditional ADversarial Image Translation (CA-DIT) to explicitly align the class distributions given samples between the two domains. It integrates a discriminative structurepreserving loss and a joint adversarial generation loss. The former effectively prevents undesired label-flipping during the whole process of image translation, while the latter maintains the joint distribution alignment of images and labels. Furthermore, our approach enforces the classification consistence of target domain images before and after adaptation to aid the classifier training in both domains. Extensive experiments were conducted on multiple benchmark datasets including Digits, Faces, Scenes and Office31, showing that our approach achieved superior classification in the target domain when compared to the state-ofthe-art methods. Also, both qualitative and quantitative results well supported our motivation that aligning the class distributions can indeed improve domain adaptation.

Dual Mixup Regularized Learning for Adversarial Domain Adaptation

Computer Vision – ECCV 2020, 2020

Recent advances on unsupervised domain adaptation (UDA) rely on adversarial learning to disentangle the explanatory and transferable features for domain adaptation. However, there are two issues with the existing methods. First, the discriminability of the latent space cannot be fully guaranteed without considering the class-aware information in the target domain. Second, samples from the source and target domains alone are not sufficient for domain-invariant feature extracting in the latent space. In order to alleviate the above issues, we propose a dual mixup regularized learning (DMRL) method for UDA, which not only guides the classifier in enhancing consistent predictions in-between samples, but also enriches the intrinsic structures of the latent space. The DMRL jointly conducts category and domain mixup regularizations on pixel level to improve the effectiveness of models. A series of empirical studies on four domain adaptation benchmarks demonstrate that our approach can achieve the state-of-the-art.

Adversarial Continuous Learning in Unsupervised Domain Adaptation

2020

Domain adaptation has emerged as a crucial technique to address the problem of domain shift, which exists when applying an existing model to a new population of data. Adversarial learning has made impressive progress in learning a domain invariant representation via building bridges between two domains. However, existing adversarial learning methods tend to only employ a domain discriminator or generate adversarial examples that affect the original domain distribution. Moreover, little work has considered confident continuous learning using an existing source classifier for domain adaptation. In this paper, we develop adversarial continuous learning in a unified deep architecture. We also propose a novel correlated loss to minimize the discrepancy between the source and target domain. Our model increases robustness by incorporating high-confidence samples from the target domain. The transfer loss jointly considers the original source image and transfer examples in the target domain....

Few-Shot Adversarial Domain Adaptation

2017

This work provides a framework for addressing the problem of supervised domain adaptation with deep models. The main idea is to exploit adversarial learning to learn an embedded subspace that simultaneously maximizes the confusion between two domains while semantically aligning their embedding. The supervised setting becomes attractive especially when there are only a few target data samples that need to be labeled. In this few-shot learning scenario, alignment and separation of semantic probability distributions is difficult because of the lack of data. We found that by carefully designing a training scheme whereby the typical binary adversarial discriminator is augmented to distinguish between four different classes, it is possible to effectively address the supervised adaptation problem. In addition, the approach has a high speed of adaptation, i.e. it requires an extremely low number of labeled target training samples, even one per category can be effective. We then extensively ...