Removal of Cadmium and Chromium Ions Using Modified α, β, and γ-cyclodextrin Polymers (original) (raw)

The adsorption of cadmium and chromium from aqueous solutions with epichlorohydrin cross-linked α, β, and γ-cyclodextrin polymers (CDPs) was investigated under a wide range of experimental conditions including pH values, metal concentration, and CDP amounts. Recent studies have shown that α, β, and γ CDPs follow the Freundlich, Langmuir, and Brunauer-Emmett-Teller models and are capable of reducing heavy metal ion concentrations in water to desirable levels with enhanced sorption capabilities. The removal of cadmium and chromium achieved equilibrium in 4 h. The pH of effective cadmium removal was 6.5 to 7.5, and phosphate buffer favored the removal of cadmium in the presence of potassium ion. Chromium removal was optimal at pH 3.6 to 6.5. Current technologies can remove 99% cadmium ions from solution, yet this process is not very efficient. Furthermore, a small amount of CDPs can remove large quantities of heavy metal ions and can then be regenerated with acid for reuse. The present results are promising for using inexpensive CDPs as a low-cost material that is effective in remediating waters contaminated with heavy metal species. The sorption kinetics of CDPs along with the conditions to adsorb cadmium and chromium are reported here for the first time.