Hospitals with and without neurosurgery: a comparative study evaluating the outcome of patients with traumatic brain injury (original) (raw)

Temporal changes in outcome following intensive care unit treatment after traumatic brain injury: a 17-year experience in a large academic neurosurgical centre

Acta neurochirurgica, 2018

Traumatic brain injury (TBI) is a major cause of morbidity and mortality. However, it remains undetermined whether long-term outcomes after TBI have improved over the past two decades. We conducted a retrospective analysis of consecutive TBI patients admitted to an academic neurosurgical ICU during 1999-2015. Primary outcomes of interest were 6-month all-cause mortality (available for all patients) and 6-month Glasgow Outcome Scale (GOS, available from 2005 onwards). GOS was dichotomized to favourable and unfavourable functional outcome. Temporal changes in outcome were assessed using multivariate logistic regression analysis, adjusting for age, sex, GCS motor score, pupillary light responsiveness, Marshall CT classification and major extracranial injury. Altogether, 3193 patients were included. During the study period, patient age and admission Glasgow Coma Scale score increased, while the overall TBI severity did not change. Overall unadjusted 6-month mortality was 25% and overall...

Epidemiological and clinical characteristics predictive of ICU mortality of patients with traumatic brain injury treated at a trauma referral hospital – a cohort study

BMC Neurology, 2023

Background Traumatic brain injury (TBI) has substantial physical, psychological, social and economic impacts, with high rates of morbidity and mortality. Considering its high incidence, the aim of this study was to identify epidemiological and clinical characteristics that predict mortality in patients hospitalized for TBI in intensive care units (ICUs). Methods A retrospective cohort study was carried out with patients over 18 years old with TBI admitted to an ICU of a Brazilian trauma referral hospital between January 2012 and August 2019. TBI was compared with other traumas in terms of clinical characteristics of ICU admission and outcome. Univariate and multivariate analyses were used to estimate the odds ratio for mortality. Results Of the 4816 patients included, 1114 had TBI, with a predominance of males (85.1%). Compared with patients with other traumas, patients with TBI had a lower mean age (45.3 ± 19.1 versus 57.1 ± 24.1 years, p < 0.001), higher median APACHE II (19 versus 15, p < 0.001) and SOFA (6 versus 3, p < 0.001) scores, lower median Glasgow Coma Scale (GCS) score (10 versus 15, p < 0.001), higher median length of stay (7 days versus 4 days, p < 0.001) and higher mortality (27.6% versus 13.3%, p < 0.001). In the multivariate analysis, the predictors of mortality were older age (OR: 1.008 [1.002-1.015], p = 0.016), higher APACHE II score (OR: 1.180 [1.155-1.204], p < 0.001), lower GCS score for the first 24 h (OR: 0.730 [0.700-0.760], p < 0.001), greater number of brain injuries and presence of associated chest trauma (OR: 1.727 [1.192-2.501], p < 0.001). Conclusion Patients admitted to the ICU for TBI were younger and had worse prognostic scores, longer hospital stays and higher mortality than those admitted to the ICU for other traumas. The independent predictors of mortality were older age, high APACHE II score, low GCS score, number of brain injuries and association with chest trauma.

Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

The Lancet Neurology, 2022

Background: Traumatic brain injury (TBI) is increasingly recognised as being responsible for a substantial proportion of the global burden of disease. Neurosurgical interventions are an important aspect of care for patients with TBI, but there is little epidemiological data available on this patient population. We aimed to characterise differences in casemix, management, and mortality of patients receiving emergency neurosurgery for TBI across different levels of human development. Methods: We did a prospective observational cohort study of consecutive patients with TBI undergoing emergency neurosurgery, in a convenience sample of hospitals identified by open invitation, through international and regional scientific societies and meetings, individual contacts, and social media. Patients receiving emergency neurosurgery for TBI in each hospital’s 30-day study period were all eligible for inclusion, with the exception of patients undergoing insertion of an intracranial pressure monitor only, ventriculostomy placement only, or a procedure for drainage of a chronic subdural haematoma. The primary outcome was mortality at 14 days postoperatively (or last point of observation if the patient was discharged before this time point). Countries were stratified according to their Human Development Index (HDI)—a composite of life expectancy, education, and income measures—into very high HDI, high HDI, medium HDI, and low HDI tiers. Mixed effects logistic regression was used to examine the effect of HDI on mortality while accounting for and quantifying between-hospital and between-country variation. Findings: Our study included 1635 records from 159 hospitals in 57 countries, collected between Nov 1, 2018, and Jan 31, 2020. 328 (20%) records were from countries in the very high HDI tier, 539 (33%) from countries in the high HDI tier, 614 (38%) from countries in the medium HDI tier, and 154 (9%) from countries in the low HDI tier. The median age was 35 years (IQR 24–51), with the oldest patients in the very high HDI tier (median 54 years, IQR 34–69) and the youngest in the low HDI tier (median 28 years, IQR 20–38). The most common procedures were elevation of a depressed skull fracture in the low HDI tier (69 [45%]), evacuation of a supratentorial extradural haematoma in the medium HDI tier (189 [31%]) and high HDI tier (173 [32%]), and evacuation of a supratentorial acute subdural haematoma in the very high HDI tier (155 [47%]). Median time from injury to surgery was 13 h (IQR 6–32). Overall mortality was 18% (299 of 1635). After adjustment for casemix, the odds of mortality were greater in the medium HDI tier (odds ratio [OR] 2·84, 95% CI 1·55–5·2) and high HDI tier (2·26, 1·23–4·15), but not the low HDI tier (1·66, 0·61–4·46), relative to the very high HDI tier. There was significant between-hospital variation in mortality (median OR 2·04, 95% CI 1·17–2·49). Interpretation: Patients receiving emergency neurosurgery for TBI differed considerably in their admission characteristics and management across human development settings. Level of human development was associated with mortality. Substantial opportunities to improve care globally were identified, including reducing delays to surgery. Between-hospital variation in mortality suggests changes at an institutional level could influence outcome and comparative effectiveness research could identify best practices.

Traumatic brain injury patient volume and mortality in neurosurgical intensive care units: a Finnish nationwide study

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2016

Background: Differences in outcomes after traumatic brain injury (TBI) between neurosurgical centers exist, although the reasons for this are not clear. Thus, our aim was to assess the association between the annual volume of TBI patients and mortality in neurosurgical intensive care units (NICUs). Methods: We collected data on all patients treated in the five Finnish university hospitals to examine all patients with TBI treated in NICUs in Finland from 2009 to 2012. We used a random effect logistic regression model to adjust for important prognostic factors to assess the independent effect of ICU volume on 6-month mortality. Subgroup analyses were performed for patients with severe TBI, moderate-to-severe TBI, and those who were undergoing mechanical ventilation or intracranial pressure monitoring. Results: Altogether 2,328 TBI patients were treated during the study period in five NICUs. The annual TBI patient volume ranged from 61 to 206 patients between the NICUs. Univariate analysis, showed no association between the NICUs' annual TBI patient volume and 6-month mortality (p = 0.063). The random effect model showed no independent association between the NICUs' annual TBI patient volume and 6-month mortality (OR = 1.000, 95% CI = 0.996-1.004, p = 0.876). None of the pre-defined subgroup analyses indicated any association between NICU volume and patient mortality (p > 0.05 for all). Discussion and Conclusion: We did not find any association between annual TBI patient volume and 6-month mortality in NICUs. These findings should be interpreted taking into account that we only included NICUs, which by international standards all treated high volumes of TBI patients, and that we were not able to study the effect of NICU volume on neurological outcome.

Traumatic brain injury (TBI) outcomes in an LMIC tertiary care centre and performance of trauma scores

BMC anesthesiology, 2018

This study evaluates post-ICU outcomes of patients admitted with moderate and severe Traumatic Brain Injury (TBI) in a tertiary neurocritical care unit in an low middle income country and the performance of trauma scores: A Severity Characterization of Trauma, Trauma and Injury Severity Score, Injury Severity Score and Revised Trauma Score in this setting. Adult patients directly admitted to the neurosurgical intensive care units of the National Hospital of Sri Lanka between 21st July 2014 and 1st October 2014 with moderate or severe TBI were recruited. A telephone administered questionnaire based on the Glasgow Outcome Scale Extended (GOSE) was used to assess functional outcome of patients at 3 and 6 months after injury. The economic impact of the injury was assessed before injury, and at 3 and 6 months after injury. One hundred and one patients were included in the study. Survival at ICU discharge, 3 and 6 months after injury was 68.3%, 49.5% and 45.5% respectively. Of the survivo...