Prospective applications of ultrahigh resolution proteomics in clinical mass spectrometry (original) (raw)

Using data-independent, high resolution mass spectrometry in protein biomarker research: Perspectives and clinical applications

PROTEOMICS - Clinical Applications, 2015

In medicine, there is an urgent need for protein biomarkers in a range of applications that includes diagnostics, disease stratification, and therapeutic decisions. One of the main technologies to address this need is MS, used for protein biomarker discovery and, increasingly, also for protein biomarker validation. Currently, data-dependent analysis (also referred to as shotgun proteomics) and targeted MS, exemplified by SRM, are the most frequently used mass spectrometric methods. Recently developed data-independent acquisition techniques combine the strength of shotgun and targeted proteomics, while avoiding some of the limitations of the respective methods. They provide high-throughput, accurate quantification, and reproducible measurements within a single experimental setup. Here, we describe and review data-independent acquisition strategies and their recent use in clinically oriented studies. In addition, we also provide a detailed guide for the implementation of SWATH-MS (where SWATH is sequential window acquisition of all theoretical mass spectra)-one of the data-independent strategies that have gained wide application of late.

Mass Spectrometry-Based Serum Proteomics for Biomarker Discovery and Validation

Methods in molecular biology (Clifton, N.J.), 2017

Blood protein measurements are used frequently in the clinic in the assessment of patient health. Nevertheless, there remains the need for new biomarkers with better diagnostic specificities. With the advent of improved technology for bioanalysis and the growth of biobanks including collections from specific disease risk cohorts, the plasma proteome has remained a target of proteomics research toward the characterization of disease-related biomarkers. The following protocol presents a workflow for serum/plasma proteomics including details of sample preparation both with and without immunoaffinity depletion of the most abundant plasma proteins and methodology for selected reaction monitoring mass spectrometry validation.

Proteomic-based biomarker discovery for development of next generation diagnostics

In the post-genome age, proteomics is receiving significant attention because they provide an invaluable source of biological structures and functions at the protein level. The search for disease-specific biomarkers for diagnostic and/or therapeutic applications is one of the areas that pro-teomics is having a significant impact. Thus, the identification of a Bgood^ biomarker enables a more accurate early diagnosis and prognosis of disease. Rapid advancements in mass spectrometry (MS) instrumentation, liquid chromatography MS (LCMS), protein microarray technology, and other protein profiling methodologies have a substantial expansion of our toolbox to identify disease-specific protein and peptide bio-markers. This review covers a selection of widely used prote-omic technologies for biomarker discovery. In addition, we describe the most commonly used approaches for diagnosis based on proteomic biomarkers and further discuss trends and critical challenges during development of cost-effective rapid diagnostic tests and microfluidic diagnostic systems based on proteomic biomarkers.

Mass spectrometry-based clinical proteomics

Pharmacogenomics, 2003

In recent years, mass spectrometry (MS) has been recognized as a ‘Gold Standard’ tool for the identification and analysis of individual proteins in expression proteomics studies. Moreover, MS has proven useful for the analysis of nucleic acids for single nucleotide polymorphism (SNP) genotyping purposes. With the increased usage of MS as a standard tool for life science applications and the advancement of MS instrumentation, sample preparation and bioinformatics, MS technology has entered novel screening and discovery application areas that are beyond the traditional protein identification and characterization applications. The areas of clinical diagnostics and predictive medicine are just two prime examples of these fields. Predictive markers or biomarkers for early diagnosis of diseases are of growing importance for the human healthcare community. The goal of using MS in clinical proteomics is to generate protein profiles (mass to charge [m/z] ratio versus signal intensity) from r...

Sampling and analytical strategies for biomarker discovery using mass spectrometry

BioTechniques, 2006

There is an often unspoken truth behind the course of scientific investigation that involves not what is necessarily academically worthy of study, but rather what is scientifically worthy in the eyes of funding agencies. The perception of worthy research is, as cost is driven in the simplest sense in economics, often driven by demand. Presently, the demand for novel diagnostic and therapeutic protein biomarkers that possess high sensitivity and specificity is placing major impact on the field of proteomics. The focal discovery technology that is being relied on is mass spectrometry (MS), whereas the challenge of biomarker discovery often lies not in the application of MS but in the underlying proteome sampling and bioinformatic processing strategies. Although biomarker discovery research has been historically technology-driven, it is clear from the meager success in generating validated biomarkers that increasing attention must be placed at the pre-analytic stage, such as sample ret...

Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development

Clinical and Translational Medicine, 2014

Biomarker research is continuously expanding in the field of clinical proteomics. A combination of different proteomic-based methodologies can be applied depending on the specific clinical context of use. Moreover, current advancements in proteomic analytical platforms are leading to an expansion of biomarker candidates that can be identified. Specifically, mass spectrometric techniques could provide highly valuable tools for biomarker research. Ideally, these advances could provide with biomarkers that are clinically applicable for disease diagnosis and/ or prognosis. Unfortunately, in general the biomarker candidates fail to be implemented in clinical decision making. To improve on this current situation, a well-defined study design has to be established driven by a clear clinical need, while several checkpoints between the different phases of discovery, verification and validation have to be passed in order to increase the probability of establishing valid biomarkers. In this review, we summarize the technical proteomic platforms that are available along the different stages in the biomarker discovery pipeline, exemplified by clinical applications in the field of bladder cancer biomarker research.

Towards stable diagnostic setups in clinical proteomics: Absolute quantitation of peptide biomarkers using MALDI-TOF-MS

PROTEOMICS – CLINICAL APPLICATIONS, 2007

In routine clinical diagnostics, peptide biomarkers are most commonly quantified using immunological techniques but these methods often lack sensitivity and/or specificity. Hence, quantitative mass spectrometry detection is desirable as an alternative diagnostic tool. To date, quantitative mass spectrometry is mostly based on ESI-MS coupled to LC, requiring highly sophisticated instrumentation and knowledge and is time consuming and expensive. In contrast, MALDI-TOF-MS is a very simple, sensitive and rapid method for the detection of peptide biomarkers. However, the infeasibility of absolute quantification has been a tremendous handicap to the use of MS in stable clinical diagnostics. Here, we describe the development of a technical platform based on ClinProt particles and heavy-isotope internal peptide standards for the fast and reliable preparation of samples. This combines the advantages of MALDI-TOF as a read-out system with absolute quantitation of peptide biomarkers. As a proof-of-concept, this platform was successfully employed for the absolute determination of the concentration of the highly abundant serum peptide des-Ala-Fibrinopeptide A in 45 serum samples from healthy donors. Such technology essentially contributes to the development of a stable MALDI-TOF-MS-based clinical assay.

Advances and Challenges in Liquid Chromatography-Mass Spectrometry-Based Proteomics Profiling for Clinical Applications

Molecular & Cellular Proteomics, 2006

The advances in proteomic technologies provide tremendous opportunities for applying these technologies in biomarker-related clinical applications; however, the unique characteristics of human biofluids such as high dynamic range in protein abundances and extreme complexity of human proteomes present tremendous challenges for current analytical technologies. In this review, we focus on summarizing the recent advances in LC-MS based proteomic profiling and