Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates (original) (raw)
Related papers
The European journal of neuroscience, 2015
Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalizations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up 2 semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when...
Attention modulates cortical processing of pitch feedback errors in voice control
Scientific reports, 2015
Considerable evidence has shown that unexpected alterations in auditory feedback elicit fast compensatory adjustments in vocal production. Although generally thought to be involuntary in nature, whether these adjustments can be influenced by attention remains unknown. The present event-related potential (ERP) study aimed to examine whether neurobehavioral processing of auditory-vocal integration can be affected by attention. While sustaining a vowel phonation and hearing pitch-shifted feedback, participants were required to either ignore the pitch perturbations, or attend to them with low (counting the number of perturbations) or high attentional load (counting the type of perturbations). Behavioral results revealed no systematic change of vocal response to pitch perturbations irrespective of whether they were attended or not. At the level of cortex, there was an enhancement of P2 response to attended pitch perturbations in the low-load condition as compared to when they were ignore...
Neural sensitivity to human voices: ERP evidence of task and attentional influences
In an earlier study, we found that human voices evoked a positive event-related potential (ERP) peaking at B320 ms after stimulus onset, distinctive from those elicited by instrumental tones. Here we show that though similar in latency to the Novelty P3, this Voice-Sensitive Response (VSR) differs in antecedent conditions and scalp distribution. Furthermore, when participants were not attending to stimuli, the response to voices was undistinguished from other harmonic stimuli (strings, winds, and brass). During a task requiring attending to a feature other than timbre, voices were not distinguished from voicelike stimuli (strings), but were distinguished from other harmonic stimuli. We suggest that the component elicited by voices and similar sounds reflects the allocation of attention on the basis of stimulus significance (as opposed to novelty), and propose an explanation of the task and attentional factors that contribute to the effect.
ERP correlates of language-specific processing of auditory pitch feedback during self-vocalization
Brain and Language, 2012
The present study investigated whether the neural correlates for auditory feedback control of vocal pitch can be shaped by tone language experience. Event-related potentials (P2/N1) were recorded from adult native speakers of Mandarin and Cantonese who heard their voice auditory feedback shifted in pitch by À50, À100, À200, or À500 cents when they sustained the vowel sound /u/. Cantonese speakers produced larger P2 amplitudes to À200 or À500 cents stimuli than Mandarin speakers, but this language effect failed to reach significance in the case of À50 or À100 cents. Moreover, Mandarin speakers produced shorter N1 latencies over the left hemisphere than the right hemisphere, whereas Cantonese speakers did not. These findings demonstrate that neural processing of auditory pitch feedback in vocal motor control is subject to language-dependent neural plasticity, suggesting that cortical mechanisms of auditoryvocal integration can be shaped by tone language experience.
Event-related potentials during selective attention to speech sounds
Biological Psychology, 1983
Event-related potentials (ERPs) were recorded from subjects while they selectively attended to sequences of stop-consonant syllables or sequences of tone pips of different frequencies. The ERP difference waveforms that distinguished attended from unattended speech sounds were highly similar in morphology and scalp distribution to the difference waveforms elicited by the tone pips. These results suggest that the attention mechanisms brought into play when selecting complex phonetic stimuli for further analysis are similar to those engaged when selecting between tones of different frequencies, in contrast with previous theoretical interpretations. Latency differences observed between the attention-related ERPs to simple and complex stimuli were attributed to differences in the duration of processing that makes these stimulus features available to attention mechanisms.
International Journal of Psychophysiology, 2012
Auditory sensory processing is an important element of the neural mechanisms controlling human vocalization. We evaluated which components of Event Related Potentials (ERP) elicited by the unexpected shift of fundamental frequency in a subject's own voice might correlate with his/her ability to process auditory information. A significant negative correlation between the latency of the N1 component of the ERP and the Montreal Battery of Evaluation of Amusia scores for Melodic organization was found. A possible functional role of neuronal activity underling the N1 component in voice control mechanisms is discussed.
ERP Correlates of the Magnitude of Pitch Errors Detected in the Human Voice
Neuroscience, 2013
Auditory event-related potentials (ERP)s of the P1-N1-P2 complex are modulated when participants hear frequency-altered feedback (FAF) regarding their ongoing vocal productions. However, the relationship between feedback perturbation magnitudes and the resultant neural responses is at present unclear. In the present study, we exposed speakers to FAF of different magnitudes ranging from 0 to 400 cents. Vocal responses and P1-N1-P2-N2 ERPs were examined in an attempt to relate variation in the magnitude of the imposed feedback perturbation with variation in vocal and neural responses. Overall, vocal response magnitudes remained relatively consistent in response to smaller feedback perturbations (<250 cents), while larger feedback perturbations (>300 cents) resulted in decreased vocal response magnitudes. P1 amplitudes were found to increase in a non-specific manner in response to FAF. Conversely, N1 amplitudes displayed increased specificity: small feedback perturbations evoked one size of response, while larger feedback perturbations resulted in larger responses. The P2 component showed the most systematic amplitude modulation as feedback perturbation magnitude increased. A regression analysis highlighted the relationship between vocal response magnitude and P2 amplitude, with both vocal response magnitude and P2 amplitude increasing in response to perturbations between 50 and 250 cents, and then decreasing in response to larger perturbations. Although not generally observed in FAF studies, a robust N2 was also found; N2 amplitudes increased as stimulus magnitudes increased. The pattern of P1-N1-P2-N2 amplitude modulation in response to different magnitudes of FAF indicates that these components reflect processes involved in the detection and correction of unintended changes in auditory feedback during speech.
ERP correlates of online monitoring of auditory feedback during vocalization
Psychophysiology, 2009
When speakers hear the fundamental frequency (F0) of their voice altered, they shift their F0 in the direction opposite the perturbation. The current study used ERPs to examine sensory processing of short feedback perturbations during an ongoing utterance. In one session, participants produced a vowel at an F0 of their own choosing. In another session, participants matched the F0 of a cue voice. An F0 perturbation of 0, 25, 50, 100, or 200 cents was introduced for 100 ms. A mismatch negativity (MMN) was observed. Differences between sessions were only found for 200-cent perturbations. Reduced compensation when speakers experienced the 200-cent perturbations suggests that this larger perturbation was perceived as externally generated. The presence of an MMN, and no earlier (N100) response suggests that the underlying sensory process used to identify and compensate for errors in mid-utterance may differ from feedback monitoring at utterance onset.
Dynamics of Vocalization-Induced Modulation of Auditory Cortical Activity at Mid-utterance
PloS one, 2013
Background: Recent research has addressed the suppression of cortical sensory responses to altered auditory feedback that occurs at utterance onset regarding speech. However, there is reason to assume that the mechanisms underlying sensorimotor processing at mid-utterance are different than those involved in sensorimotor control at utterance onset. The present study attempted to examine the dynamics of event-related potentials (ERPs) to different acoustic versions of auditory feedback at mid-utterance.