Release of Proinflammatory and Prothrombotic Mediators in the Brain and Peripheral Circulation in Spontaneously Hypertensive and Normotensive Wistar‐Kyoto Rats (original) (raw)

Release of proinflammatory and prothrombbtic mediators in the brain and peripheral circulation in spontaneously hypertensive and normotensive Wistar-Kyoto rats

1992

Background and Purpose: We reported previously that stroke risk factors prepared the brain stem for the development of ischemia and hemorrhage and induced the production of tumor necrosis factor following an intrathecal injection of Iipopolysaccharide, a prototypic monocyte-activating stimulus. This study evaluates whether blood or brain cells of hypertensive rats produce more proinflammatory and prothrombotic mediators than do blood or brain cells of normotensive rats. MethotJs: Levels of tumor necrosis factor, platelet-activating factor, 6-ketoprostaglandin F1a, and thromboxane B2 in the cerebrospinal fluid and blood of spontaneously hypertensive and normotensive Wistar-Kyoto rats were monitored before and after achallenge with Iipopolysaccharide. Results: Little or no activity from these media tors was found in the cerebrospinal fluid or blood of saline-injected control animals. Intravenous administration of Iipopolysaccharide (0.001, 0.1, and 1.8 mg/kg) produced dose-dependent i...

Effects of lipopolysaccharide on the blood-brain barrier permeability in prolonged nitric oxide blockade-induced hypertensive rats

The International journal of neuroscience, 2005

The authors investigated the effects of lipopolysaccharide (LPS) on the blood-brain barrier (BBB) integrity and the activity of astrocytes during the Nw-nitro-L-arginine methyl ester (L-NAME) hypertension followed by angiotensin (ANG) II in rats. They measured the changes in the BBB permeability using the Evans blue (EB) dye and concomitantly in the levels of TNF-a, IL-1b, and IL-6 in serum and nitric oxide in plasma. The authors performed two tight junction-specific proteins, zonula occludens-1 and occludin, and glial fibrillary acidic protein, by using immunohisto-chemical method. The serum levels of TNF-a, IL-1 IL-6, and the plasma level of nitric oxide significantly increased in LPS-treated rats (p<.01). The EB dye extravasation increased in cerebellum (p<.001) and diencephalon (p<.05) of L-NAME plus ANG II-treated animals. However, LPS reduced the increased EB dye extravasation in the brain regions of L-NAME-induced hypertensive rats treated with ANG II (p<.001). In...

Cerebrovascular Hemodynamics and Ischemic Tolerance: Lipopolysaccharide-Induced Resistance to Focal Cerebral Ischemia is not Due to Changes in Severity of the Initial Ischemic Insult, but is Associated with Preservation of Microvascular Perfusion

Journal of Cerebral Blood Flow & Metabolism, 1999

Lipopolysaccharide (LPS), administered 72 hours before middle cerebral artery (MCA) occlusion, confers significant protection against ischemic injury. For example, in the present study, LPS (0.9 mg/kg intravenously) induced a 31% reduction in infarct volume (compared with saline control) assessed 24 hours after permanent MCA occlusion. To determine whether LPS induces true tolerance to ischemia, or merely attenuates initial ischemic severity by augmenting collateral blood flow, local CBF was measured autoradiographically 15 minutes after MCA occlusion. Local CBF did not differ significantly between LPS- and saline-pretreated rats (e.g., 34 ± 10 and 29 ± 15 mL·100 g−1·min−1 for saline and LPS pretreatment in a representative region of ischemic cortex), indicating that the neuroprotective action of LPS is not attributable to an immediate reduction in the degree of ischemia induced by MCA occlusion, and that LPS does indeed induce a state of ischemic tolerance. In contrast to the simil...

Comparison of stimulated tissue factor expression by brain microvascular endothelial cells from normotensive (WKY) and hypertensive (SHR) rats

Brain Research, 1992

The amounts of tissue factor (TF) expressed by brain microvascular endothelial cells (BMECs) from normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were compared after stimulating the cells with different doses of lipopolysaccharide (LPS), thrombin, phorbol myristic acid (PMA), Ca 2 +·ionophore (A23187), or tumor necrosis factor (TNF) and interleukin·l (IL.l). Treatment ofcultured BMECs fron. WKY and SHR with all of these factors dose·dependently increased their total amount of TF; no substantive differences in the Ieveis of enhanced TF expression were observed between WKY and SHR BMECs. We conclude that stimulated endothelium from rats with hypertension, a major stroke risk factor, is not hyperresponsive with respect to TF expression when compared to normotensive controls.

Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size

Journal of Neuroinflammation, 2011

Background: Systemic inflammation impairs outcome in stroke patients and experimental animals via mechanisms which are poorly understood. Circulating inflammatory mediators can activate cerebrovascular endothelium or glial cells in the brain and impact on ischaemic brain injury. One of the most serious early clinical complications of cerebral ischaemia is brain oedema, which compromises survival in the first 24-48 h. It is not understood whether systemic inflammatory challenges impair outcome after stroke by increasing brain injury only or whether they have direct effects on brain oedema, cerebrovascular inflammation and blood-brain barrier damage. Methods: We used two different systemic inflammatory stimuli, acute endotoxin treatment and anaphylaxis to study mechanisms of brain injury after middle cerebral artery occlusion (MCAo). Ischaemic brain injury, blood-brain barrier damage and oedema were analysed by histological techniques. Systemic cytokine responses and inflammatory changes in the brain were analysed by cytometric bead array, immunofluorescence, in situ hibridization and quantitative real-time PCR. Results: Systemic inflammatory challenges profoundly impaired survival in the first 24 h after experimental stroke in mice, independently of an increase in infarct size. Systemic lipopolysaccharide (LPS) dose-dependently increased mortality (50-100%) minutes to hours after cerebral ischaemia. Acute anaphylactic challenge in ovalbuminsensitised mice affected stroke more seriously when induced via intraperitoneal administration compared to intravenous. Both LPS and anaphylaxis induced inflammatory changes in the blood and in the brain prior to experimental stroke. Plasma cytokine levels were significantly higher after LPS, while increased IL-10 levels were seen after anaphylaxis. After MCAo, both LPS and anaphylaxis increased microglial interleukin-1α (IL-1α) expression and blood-brain barrier breakdown. LPS caused marked granulocyte recruitment throughout the ipsilateral hemisphere. To investigate whether reduction of ischaemic damage can improve outcome in systemic inflammation, controlled hypothermia was performed. Hypothermia reduced infarct size in all treatment groups and moderately improved survival, but failed to reduce excess oedema formation after anaphylaxis and LPSinduced neuroinflammation. Conclusions: Our results suggest that systemic inflammatory conditions induce cerebrovascular inflammation via diverse mechanisms. Increased brain inflammation, blood-brain barrier injury and brain oedema formation can be major contributors to impaired outcome in mice after experimental stroke with systemic inflammatory stimuli, independently of infarct size.

Role of Neutrophils in Exacerbation of Brain Injury After Focal Cerebral Ischemia in Hyperlipidemic Mice

Stroke, 2015

Background and Purpose— Inflammation-related comorbidities contribute to stroke-induced immune responses and brain damage. We previously showed that hyperlipidemia exacerbates ischemic brain injury, which is associated with elevated peripheral and cerebral granulocyte numbers. Herein, we evaluate the contribution of neutrophils to the exacerbation of ischemic brain injury. Methods— Wild-type mice fed with a normal chow and ApoE knockout mice fed with a high cholesterol diet were exposed to middle cerebral artery occlusion. CXCR2 was blocked using the selective antagonist SB225002 (2 mg/kg) or neutralizing CXCR2 antiserum. Neutrophils were depleted using an anti-Ly6G antibody. At 72 hours post ischemia, immunohistochemistry, flow cytometry, and real-time polymerase chain reaction were performed to determine cerebral tissue injury and immunologic changes in the blood, bone marrow, and brain. Functional outcome was assessed by accelerated rota rod and tight rope tests at 4, 7, and 14 d...

Proinflammatory cytokines in the embolic model of cerebral ischemia in rat

Iranian journal of allergy, asthma, and immunology, 2014

Increased levels of proinflammatory cytokines have been recorded after the onset of transient or permanent brain ischemia and are usually associated with exacerbation of ischemic injury. Embolic stroke model is more relevant to the pathophysiological situation in such patients, because the majority of ischemic injuries in humans are induced by old thrombi that originate from the heart and carotid arteries. Therefore, the aim of the present study was to investigate changes of inflammatory cytokines after embolic stroke. Rats were subjected to embolic stroke, induced by a natural old clot which was injected in Middle Cerebral Artery (MCA), or sham stroke, which the same volume of saline was injected into the MCA. At 48 h after stroke induction, the levels of 5 cytokines (IL-1α and β, IL-6, IFN-γ and TNF-α) were determined in 500 µg of total protein using the Bio-Plex Rat Cytokine Array (BioRad), according to the manufacturer's instructions in ischemic and non-ischemic cortices. Wh...

Mild Systemic Inflammation has a Neuroprotective Effect After Stroke in Rats

Current Neurovascular Research, 2008

Stroke is accompanied by a strong inflammatory reaction in the brain. Periodontal disease is a chronic local infection which causes a systemic low grade inflammation. We hypothesized that a mild systemic inflammatory reaction as caused by periodontal disease prior to stroke onset, may exert a neuroprotective effect in a rat model of focal ischemia.