A Latching Capacitive RF MEMS Switch in a Thin Film Package (original) (raw)
Related papers
Mechanical Design of RF MEMS Capacitive Switches
2000
This paper analyses the mechanical behaviour of various suspensions of electrostatically actuated RF MEMS switches. A family of capacitive switches is described, with suspensions varying step by step from cantilevers to meander shaped double clamped beams. The result is a capacitive shunt switch with a designed actuation voltage of 4.5 V, and 20dB isolation and 0.04 dB insertion loss at a frequency of 2 GHz. At the time of writing, the proposed devices are being processed.
A Low Voltage Mems Structure for RF Capacitive Switches
Progress In Electromagnetics Research, 2006
A novel structure for the capacitive micromachined switches with low actuation voltage is proposed. In this structure both contact plates of the switch are designed as displaceable membranes. Two structures with similar dimensions and conditions, differing on only the number of the displaceable beams are analytically investigated as well as simulated using ANSYS software. The obtained results indicate about 30% reduction in actuation voltage from the conventional single beam to our proposed double beam structure. The stress on the beam due to the actuation voltage is also reduced increasing the switching life time. The dynamic simulation results in switching time of 6.5 µsec compared to the 8.9 µsec of the analytical results. It can be implemented by the well established surface micromachining for RF applications.
Comparative Study of Cantilever RF MEMS Switch
Materials Today: Proceedings, 2017
In a MEMS based RF switch Cantilever beam is an element that is fixed at one end and free from another side. The electrostatic actuation process occurs on the beam and it will deflect from an original position. As the Electrostatic force increases, the zcomponent displacement produced in the beam is also increases. The beam is placed at the 2µm height from the ground substrate. The cantilever works as a switch which operates as ON or OFF. When the switch is ON its capacitance increases and when it is OFF its capacitance decreases. When applied actuation voltage reaches to Pull-in-voltage the cantilever connects with the ground electrode. This paper explores the concept of increase in flexibility, switching speed, low power consumption, low actuation voltage and reduction in squeeze film damping. The various types of cantilever switch provide discrete displacement corresponding to actuation voltage. In this paper we simulated the cantilever switch with various shapes. The simulation is done using COMSOL MULTIPHYSICS software.
Development of a low stress RF MEMS double-cantilever shunt capacitive switch
Microsystem Technologies, 2020
In this paper, a novel RF MEMS shunt capacitive switch with application in the Ka frequency band is proposed. The spring design and the step structure added to the beam succeeded in improving the performance of the switch and reducing the stress which results in extended lifetime of the switch. Also, by optimally reducing the gap between the dielectric and the beam (without problems such as self-actuation), the actuation voltage of the switch is significantly reduced. Electromechanical and scattering parameters analysis have been done by using COMSOL Multiphysics and HFSS software, respectively. The actuation voltage of the proposed device is 9.2 V. Since the aluminum has a lower mass compared to gold, an aluminum beam has been used in the switch. Desirable scattering parameters at the resonance frequency of 33.5 GHz have been obtained which include insertion loss of-0.3 dB and return loss of-18 dB. The high isolation of-57 dB verifies the improved performance of the switch. Finally, as another innovation in this paper, the effect of inductor and capacitor presence in the input of transmission line is investigated. This analysis has been done by using ADS. Results of the circuit analysis presented in this paper, help the MEMS switch designers to understand the realistic switch behavior before fabrication which considerably saves cost and time.
In a MEMS based RF switch Cantilever beam is an element that is fixed at one end and free from another side. The electrostatic actuation process occurs on the beam and it will deflect from an original position. As the Electrostatic force increases, the z-component displacement produced in the beam is also increases. The beam is placed at the 2µm height from the ground substrate. The cantilever works as a switch which operates as ON or OFF. When the switch is ON its capacitance increases and when it is OFF its capacitance decreases. When applied actuation voltage reaches to Pull-in-voltage the cantilever connects with the ground electrode. This paper explores the concept of increase in flexibility, switching speed, low power consumption, low actuation voltage and reduction in squeeze film damping. The various types of cantilever switch provide discrete displacement corresponding to actuation voltage. In this paper we simulated the cantilever switch with various shapes. The simulation is done using COMSOL MULTIPHYSICS software.
Design and Simulation of Capacitive RF MEMS Switches using Tuned Dual Beam
2013
A low actuation voltage RF MEMS shunt capacitive switch has been designed and simulated for use in X-band (8-12GHz) applications. The MEMS switch is a freely moving membrane over coplanar waveguide. Double meander structure of tuned dual beam is used here to improve the isolation of switch. Actuation is achieved by using electrostatic mechanism because of its low power consumption, small size and less switching time. Simulation using CoventorWare shows that the actuation voltage for switch is 4.8V to 5.2V and up-state and downstate capacitance of 38fF and 3pF respectively. Spring constant for beam is 3.57N/m. HFSS simulation reveals that insertion loss is in the range of 0.01-0.02dB and up-state return loss better than -15dB in Xband. The switch offers a down-state isolation of 50dB at 10GHz.
A Novel Design of Cantilever RF MEMS Series Switch
This paper presents novel design of various configurations of cantilever type Radio Frequency Micro Electro Mechanical Systems (RF MEMS) Series Switch. The paper emphasizes on study of Actuation Voltage of RF MEMS switches. Actuation voltages of uniform cantilever switches has been compared with cantilever switches supported on three bars (non-uniform switch) for various geometric configuration and material properties. It is observed from the simulation results that reduction in actuation voltage as high as 5V can be achieved by reducing the anchorage width. Also, use of mica with higher dielectric constant over silicon nitride as dielectric layer yields considerable reduction in actuation voltage.
Design of low actuation voltage RF MEMS cantilever switch
2008 International Conference on Recent Advances in Microwave Theory and Applications, 2008
This paper presents novel design of various configurations of cantilever type Radio Frequency Micro Electro Mechanical Systems (RF MEMS) Series Switch. The paper emphasizes on study of Actuation Voltage of RF MEMS switches. Actuation voltages of uniform cantilever switches has been compared with cantilever switches supported on three bars (non-uniform switch) for various geometric configuration and material properties. It is observed from the simulation results that reduction in actuation voltage as high as 5V can be achieved by reducing the anchorage width. Also, use of mica with higher dielectric constant over silicon nitride as dielectric layer yields considerable reduction in actuation voltage.
IAETSD-Design and Analysis of a Novel Low Actuated Voltage RF MEMS Shunt Capacitive Switch
This Paper presents design, analysis, proposed fabrication process and simulation of a novel low actuated voltage shunt capacitive RF MEMS Switch. The Air gap in between the membrane and CPW signal line is 1.5 µm. The lowest actuation voltage of switch is 3 Volts. The proposed fixedfixed flexures beam structure provides excellent RF Characteristics (Isolation -43 dB at 28 GHZ and insertion loss -0.12 dB at 28 GHZ).
A New Electrostatically Actuated Low Voltage RF Mems Switch
European Scientific Journal, 2013
This paper describes the design and simulation of a new low voltage electrostatically actuated RF MEMS switch. The switch structure is designed in such a way that, the inherent limitation of electrostatic actuation is relaxed and the actuation voltage is as low as 3.5 V. The idea is to using a two-step electrostatic actuation mechanism instead of conventional two parallel plate electrostatic actuators. In fact the gap between switch and transmission line is reduced in two steps. In order to investigate the usefulness of the proposed idea, both mechanically and electromagnetically, FEM simulations are carried out and satisfactory results are obtained. The RF characteristics of the switch are as follow; Isolation -12 dB at 30 GHz, Insertion Loss -0.08dB at 30 GHz and return loss was below -20 dB at 30 GHz. The proposed switch in this paper can be a promising choice for low voltage high performance RF MEMS switches.