Spatio-Temporal Representation Learning with Social Tie for Personalized POI Recommendation (original) (raw)
Recommending a limited number of Point-of-Interests (POIs) a user will visit next has become increasingly important to both users and POI holders for Location-Based Social Networks (LBSNs). However, POI recommendation is a challenging task since complex sequential patterns and rich contexts are contained in extremely sparse user check-in data. Recent studies show that embedding techniques effectively incorporate POI contextual information to alleviate the data sparsity issue, and Recurrent Neural Network (RNN) has been successfully employed for sequential prediction. Nevertheless, existing POI recommendation approaches are still limited in capturing user personalized preference due to separate embedding learning or network modeling. To this end, we propose a novel unified spatio-temporal neural network framework, named PPR, which leverages users’ check-in records and social ties to recommend personalized POIs for querying users by joint embedding and sequential modeling. Specificall...