Inhibition of microtubules and cell cycle arrest by a new 1-Deaza-7,8-dihydropterine antitumor drug, CI 980, and its chiral isomer NSC 613863 (original) (raw)
Related papers
Cancer research, 2002
3-Iodoacetamido benzoyl ethyl ester (3-IAABE) is a new compound synthesized in our laboratory. The primary action of 3-IAABE is to inhibit microtubule assembly by interacting with -SH groups on tubulin. In contrast to other known microtubule disrupters, 3-IAABE caused a double blockade in the cell cycle at G(1)-S transition and in M phase. The blockade was determined by cell cycle analysis and chromosome distribution. Kinase activities of cyclin E and cyclin-dependent kinase 2 responsible for the G(1)-S transition were increased, as were the activities of mitotic cyclin B and cdc2. 3-IAABE treatment also increased p53 expression and dephosphorylated (or activated) retinoblastoma protein. Investigation of the signal transduction pathway showed that 3-IAABE induced bcl-2 phosphorylation, followed by activation of caspase-9, -3, and -6, but not caspase-8. DNA fragmentation factor and poly(ADP-ribose) polymerase, the downstream substrates of caspase-3 and -6, were cleaved after 3 h of e...
Data from TTI-237: A Novel Microtubule-Active Compound with In vivo Antitumor Activity
5-Chloro-6-[2,6-difluoro-4-[3-(methylamino)propoxy]phenyl]-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine butanedioate (TTI-237) is a microtubule-active compound of novel structure and function. Structurally, it is one of a class of compounds, triazolo[1,5a]pyrimidines, previously not known to bind to tubulin. Functionally, TTI-237 inhibited the binding of [3H]vinblastine to tubulin, but it caused a marked increase in turbidity development that more closely resembled the effect observed with docetaxel than that observed with vincristine. The morphologic character of the presumptive polymer is unknown at present. When applied to cultured human tumor cells at concentrations near its IC50 value for cytotoxicity (34 nmol/L), TTI-237 induced multiple spindle poles and multinuclear cells, as did paclitaxel, but not vincristine or colchicine. Flow cytometry experiments revealed that, at low concentrations (20–40 nmol/L), TTI-237 produced sub-G1 nuclei and, a...
A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs
Proceedings of the National Academy of Sciences of the United States of America, 2014
The recent success of antibody-drug conjugates (ADCs) in the treatment of cancer has led to a revived interest in microtubule-destabilizing agents. Here, we determined the high-resolution crystal structure of the complex between tubulin and maytansine, which is part of an ADC that is approved by the US Food and Drug Administration (FDA) for the treatment of advanced breast cancer. We found that the drug binds to a site on β-tubulin that is distinct from the vinca domain and that blocks the formation of longitudinal tubulin interactions in microtubules. We also solved crystal structures of tubulin in complex with both a variant of rhizoxin and the phase 1 drug PM060184. Consistent with biochemical and mutagenesis data, we found that the two compounds bound to the same site as maytansine and that the structures revealed a common pharmacophore for the three ligands. Our results delineate a distinct molecular mechanism of action for the inhibition of microtubule assembly by clinically r...