Detailed Assessment of Sleep Architecture With Deep Learning and Shorter Epoch-to-Epoch Duration Reveals Sleep Fragmentation of Patients With Obstructive Sleep Apnea (original) (raw)
Related papers
Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea
Sleep
Study Objectives Accurate identification of sleep stages is essential in the diagnosis of sleep disorders (e.g. obstructive sleep apnea [OSA]) but relies on labor-intensive electroencephalogram (EEG)-based manual scoring. Furthermore, long-term assessment of sleep relies on actigraphy differentiating only between wake and sleep periods without identifying specific sleep stages and having low reliability in identifying wake periods after sleep onset. To address these issues, we aimed to develop an automatic method for identifying the sleep stages from the photoplethysmogram (PPG) signal obtained with a simple finger pulse oximeter. Methods PPG signals from the diagnostic polysomnographies of susptected OSA patients (n = 894) were utilized to develop a combined convolutional and recurrent neural network. The deep learning model was trained individually for three-stage (wake/NREM/REM), four-stage (wake/N1+N2/N3/REM), and five-stage (wake/N1/N2/N3/REM) classification of sleep. Results T...
414 Deep Neural Networks: A Survey Tool for Obstructive Sleep Apnea Prediction
Sleep, 2021
Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest N...
U-Sleep: resilient high-frequency sleep staging
npj Digital Medicine, 2021
Sleep disorders affect a large portion of the global population and are strong predictors of morbidity and all-cause mortality. Sleep staging segments a period of sleep into a sequence of phases providing the basis for most clinical decisions in sleep medicine. Manual sleep staging is difficult and time-consuming as experts must evaluate hours of polysomnography (PSG) recordings with electroencephalography (EEG) and electrooculography (EOG) data for each patient. Here, we present U-Sleep, a publicly available, ready-to-use deep-learning-based system for automated sleep staging (sleep.ai.ku.dk). U-Sleep is a fully convolutional neural network, which was trained and evaluated on PSG recordings from 15,660 participants of 16 clinical studies. It provides accurate segmentations across a wide range of patient cohorts and PSG protocols not considered when building the system. U-Sleep works for arbitrary combinations of typical EEG and EOG channels, and its special deep learning architectu...
Sleep
A common symptom of obstructive sleep apnea (OSA) is excessive daytime sleepiness (EDS). The gold standard test for EDS is the multiple sleep latency test (MSLT). However, due to its high cost, MSLT is not routinely conducted for OSA patients and EDS is instead evaluated using sleep questionnaires. This is problematic however, since sleep questionnaires are subjective and correlate poorly with the MSLT. Therefore, new objective tools are needed for reliable evaluation of EDS. The aim of this study was to test our hypothesis that EDS can be estimated with neural network analysis of previous night polysomnographic signals. We trained a convolutional neural network (CNN) classifier using electroencephalography, electrooculography, and chin electromyography signals from 2,014 patients with suspected OSA. The CNN was trained to classify the patients into four sleepiness categories based on their mean sleep latency (MSL); severe (MSL < 5min), moderate (5 ≤ MSL < 10), mild (10 ≤ MSL ...
Deep learning for automated sleep staging using instantaneous heart rate
npj Digital Medicine, 2020
Clinical sleep evaluations currently require multimodal data collection and manual review by human experts, making them expensive and unsuitable for longer term studies. Sleep staging using cardiac rhythm is an active area of research because it can be measured much more easily using a wide variety of both medical and consumer-grade devices. In this study, we applied deep learning methods to create an algorithm for automated sleep stage scoring using the instantaneous heart rate (IHR) time series extracted from the electrocardiogram (ECG). We trained and validated an algorithm on over 10,000 nights of data from the Sleep Heart Health Study (SHHS) and Multi-Ethnic Study of Atherosclerosis (MESA). The algorithm has an overall performance of 0.77 accuracy and 0.66 kappa against the reference stages on a held-out portion of the SHHS dataset for classifying every 30 s of sleep into four classes: wake, light sleep, deep sleep, and rapid eye movement (REM). Moreover, we demonstrate that th...
Quantification of Sleep Fragmentation Through the Analysis of Sleep-Stage Transitions
2003
Study Objectives: We introduce new quantitative approaches to study sleep-stage transitions with the goal of addressing the two following questions: (i) Can the new approaches provide more information on the structure of sleep-stage transitions? (ii) How does sleep fragmentation in patients with sleep apnea affect the structure of sleepstage transitions? Design: We analyze hypnograms and compare normal subjects and sleep apnea patients using numerous measures, including the percentage of sleep time for each stage, probability distributions of the duration of each stage, the sleep-stage transition matrix, and a measure of the asymmetry of this matrix. Setting: N/A Subjects: 197 normal subjects and 50 obstructive sleep apnea patients recruited in the SIESTA project. Results: We find that the time percentage for wake stage is identical for sleep apnea subjects and for normal subjects, but that the sleep apnea group have a faster decaying distribution of wake duration. Both normal subjects and sleep apnea patients have exponential distributions of duration for all sleep stages and a power law for the wake stage. We also find that there is a loss of preference of transition paths of sleep stages in sleep apnea. Conclusions: The new approaches proposed here enable us to show that the distribution of sleep and wake duration have different functional forms, indicating fundamental differences in the dynamics between sleep and wake control. The difference remains even in the fragmented sleep of sleep apnea. The fragmentation of sleep in sleep apnea results in a shorter wake duration and interrupts the structure of sleep-stage transitions of sleep apnea subjects, causing the loss of certain particular transition paths.
SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach
PLOS ONE
Electroencephalogram (EEG) is a common base signal used to monitor brain activity and diagnose sleep disorders. Manual sleep stage scoring is a time-consuming task for sleep experts and is limited by inter-rater reliability. In this paper, we propose an automatic sleep stage annotation method called SleepEEGNet using a singlechannel EEG signal. The SleepEEGNet is composed of deep convolutional neural networks (CNNs) to extract timeinvariant features, frequency information, and a sequence to sequence model to capture the complex and long shortterm context dependencies between sleep epochs and scores. In addition, to reduce the effect of the class imbalance problem presented in the available sleep datasets, we applied novel loss functions to have an equal misclassified error for each sleep stage while training the network. We evaluated the proposed method on different single-EEG channels (i.e., Fpz-Cz and Pz-Oz EEG channels) from the Physionet Sleep-EDF datasets published in 2013 and 2018. The evaluation results demonstrate that the proposed method achieved the best annotation performance compared to current literature, with an overall accuracy of 84.26%, a macro F1-score of 79.66% and κ = 0.79. Our developed model is ready to test with more sleep EEG signals and aid the sleep specialists to arrive at an accurate diagnosis.
Automatic Sleep Staging: Recent Development, Challenges, and Future Directions
ArXiv, 2021
Modern deep learning holds a great potential to transform clinical practice on human sleep. Teaching a machine to carry out routine tasks would be a tremendous reduction in workload for clinicians. Sleep staging, a fundamental step in sleep practice, is a suitable task for this and will be the focus in this article. Recently, automatic sleep staging systems have been trained to mimic manual scoring, leading to similar performance to human sleep experts, at least on scoring of healthy subjects. Despite tremendous progress, we have not seen automatic sleep scoring adopted widely in clinical environments. This review aims to give a shared view of the authors on the most recent state-of-the-art development in automatic sleep staging, the challenges that still need to be addressed, and the future directions for automatic sleep scoring to achieve clinical value.
Pediatric Automatic Sleep Staging: A comparative study of state-of-the-art deep learning methods
ArXiv, 2021
Despite the tremendous progress recently made towards automatic sleep staging in adults, it is currently known if the most advanced algorithms generalize to the pediatric population, which displays distinctive characteristics in overnight polysomnography (PSG). To answer the question, in this work, we conduct a large-scale comparative study on the state-of-theart deep learning methods for pediatric automatic sleep staging. A selection of six different deep neural networks with diverging features are adopted to evaluate a sample of more than 1,200 children across a wide spectrum of obstructive sleep apnea (OSA) severity. Our experimental results show that the performance of automated pediatric sleep staging when evaluated on new subjects is equivalent to the expert-level one reported on adults, reaching an overall accuracy of 87.0%, a Cohen’s kappa of 0.829, and a macro F1-score of 83.5% in case of single-channel EEG. The performance is further improved when dual-channel EEG·EOG are ...
ArXiv, 2022
Introduction: Sleep staging is an essential component in the diagnosis of sleep disorders and management of sleep health. It is traditionally measured in a clinical setting and requires a labor-intensive labeling process. We hypothesize that it is possible to perform robust 4-class sleep staging using the raw photoplethysmography (PPG) time series and modern advances in deep learning (DL). Methods: We used two publicly available sleep databases that included raw PPG recordings, totalling 2,374 patients and 23,055 hours. We developed SleepPPG-Net, a DL model for 4-class sleep staging from the raw PPG time series. SleepPPG-Net was trained end-to-end and consists of a residual convolutional network for automatic feature extraction and a temporal convolutional network to capture long-range contextual information. We benchmarked the performance of SleepPPG-Net against models based on the best-reported state-of-the-art (SOTA) algorithms. Results: When benchmarked on a held-out test set, S...