On the Basis Property of the Root Functions of Sturm-Liouville Operators with General Regular Boundary Conditions (original) (raw)
Abstract
We obtain the asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville operators with general regular boundary conditions. Using these formulas, we find sufficient conditions on the potential q such that the root functions of these operators do not form a Riesz basis.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (28)
- N. Dernek, O. A. Veliev, On the Riesz basisness of the root functions of the nonself- adjoint Sturm-Liouville operators, Israel Journal of Mathematics, 145 (2005) 113-123.
- P. Djakov, B. S. Mitjagin, Instability zones of periodic 1-dimensional Schrodinger and Dirac operators, Russian Math. Surveys, 61(4) (2006) 663-776.
- P. Djakov, B. S. Mitjagin, Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Doklady Mathematics, 83(1) (2011) 5-7.
- P. Djakov, B. S. Mitjagin, Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Math. Ann. 351(3) (2011) 509-540.
- P. Djakov, B. S. Mitjagin, Criteria for existence of Riesz bases consisting of root func- tions of Hill and 1D Dirac operators, Journal of Functional Analysis, 263(8) (2012) 2300-2332.
- N. Dunford, J. T. Schwartz, Linear Operators, Part 3, Spectral Operators, Wiley- Interscience, MR 90g:47001c, New York, 1988.
- F. Gesztesy and V. Tkachenko, A Schauder and Riesz Basis Criterion for Non-Self- Adjoint Schrödinger Operators with Periodic and Antiperiodic Boundary Conditions, Journal of Differential Equations, 253 (2012) 400-437.
- N. B. Kerimov, Kh. R. Mamedov, On the Riesz basis property of the root functions in certain regular boundary value problems, Math. Notes, 64(4) (1998) 483-487.
- G. M. Kesselman, On unconditional convergence of the eigenfunction expansions of some differential operators, Izv. Vuzov, Matematika, 2 (1964) 82-93 (In Russian).
- P. Lang, J. Locker, Spectral theory of two-point differential operators determined by -D2, J. Math. Anal. Appl. 146 (1990) 148-191.
- A. S. Makin, Convergence of Expansion in the Root Functions of Periodic Boundary Value Problems, Doklady Mathematics, 73(1) (2006) 71-76.
- A. S. Makin, On spectral decompositions corresponding to non-self-adjoint Sturm- Liouville operators, Dokl. Math. 73(1) (2006) 15-18.
- A. S. Makin, On the basis property of systems of root functions of regular boundary value problems for the Sturm-Liouville operator, Differ. Equ. 42(12) (2006) 1717-1728.
- Kh.R. Mamedov, On the basis property in Lp(0;
- of the root functions of a class non self adjoint Sturm-Liouville operators, Eur. J. Pure Appl. Math. 3(5) (2010) 831-838.
- Kh.R. Mamedov, H.Menken, On the basisness in L 2 (0;
- of the root functions in not strongly regular boundary value problems, Eur. J. Pure Appl. Math. 1(2) (2008) 51-60.
- H. Menken, Kh.R. Mamedov, Basis property in Lp(0;
- of the root functions corre- sponding to a boundary-value problem, J. Appl. Funct. Anal. 5(4) (2010) 351-356.
- V. P. Mikhailov, On Riesz bases in L 2 [0, 1], Dokl. Akad. Nauk USSR, 114(5) (1962) 981-984.
- M. A. Naimark, Linear Differential Operators, George G. Harap&Company, 1967.
- C. Nur, O.A. Veliev, On the Basis Property of the Root Functions of Some Class of Non-self-adjoint Sturm-Liouville Operators, arXiv:1301.7043.
- A. A. Shkalikov, On the Riesz basis property of the root vectors of ordinary differential operators, Russian Math. Surveys, 34(5) (1979) 249-250.
- A. A. Shkalikov, On the basis property of the eigenfunctions of ordinary differential operators with integral boundary conditions, Vestnik Moscow University, Ser. Mat. Mekh. 37(6) (1982) 12-21.
- A. A. Shkalikov, O. A. Veliev, On the Riesz basis property of the eigen-and associated functions of periodic and antiperiodic Sturm-Liouville problems, Math. Notes, 85(5) (2009) 647-660.
- O. A .Veliev, M. Toppamuk Duman, The spectral expansion for a nonself-adjoint Hill operators with a locally integrable potential, Journal of Math. Analysis and Appl. 265 (2002) 76-90.
- O. A. Veliev, On the Nonself-adjoint Ordinary Differential Operators with Periodic Boundary Conditions. Israel Journal of Mathematics, 176 (2010) 195-208.
- O. A. Veliev, On the basis property of the root functions of differential operators with matrix coefficients, Central European Journal of Mathematics, 9(3) (2011) 657-672.