On the Basis Property of the Root Functions of Sturm-Liouville Operators with General Regular Boundary Conditions (original) (raw)

Abstract

We obtain the asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville operators with general regular boundary conditions. Using these formulas, we find sufficient conditions on the potential q such that the root functions of these operators do not form a Riesz basis.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (28)

  1. N. Dernek, O. A. Veliev, On the Riesz basisness of the root functions of the nonself- adjoint Sturm-Liouville operators, Israel Journal of Mathematics, 145 (2005) 113-123.
  2. P. Djakov, B. S. Mitjagin, Instability zones of periodic 1-dimensional Schrodinger and Dirac operators, Russian Math. Surveys, 61(4) (2006) 663-776.
  3. P. Djakov, B. S. Mitjagin, Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Doklady Mathematics, 83(1) (2011) 5-7.
  4. P. Djakov, B. S. Mitjagin, Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials, Math. Ann. 351(3) (2011) 509-540.
  5. P. Djakov, B. S. Mitjagin, Criteria for existence of Riesz bases consisting of root func- tions of Hill and 1D Dirac operators, Journal of Functional Analysis, 263(8) (2012) 2300-2332.
  6. N. Dunford, J. T. Schwartz, Linear Operators, Part 3, Spectral Operators, Wiley- Interscience, MR 90g:47001c, New York, 1988.
  7. F. Gesztesy and V. Tkachenko, A Schauder and Riesz Basis Criterion for Non-Self- Adjoint Schrödinger Operators with Periodic and Antiperiodic Boundary Conditions, Journal of Differential Equations, 253 (2012) 400-437.
  8. N. B. Kerimov, Kh. R. Mamedov, On the Riesz basis property of the root functions in certain regular boundary value problems, Math. Notes, 64(4) (1998) 483-487.
  9. G. M. Kesselman, On unconditional convergence of the eigenfunction expansions of some differential operators, Izv. Vuzov, Matematika, 2 (1964) 82-93 (In Russian).
  10. P. Lang, J. Locker, Spectral theory of two-point differential operators determined by -D2, J. Math. Anal. Appl. 146 (1990) 148-191.
  11. A. S. Makin, Convergence of Expansion in the Root Functions of Periodic Boundary Value Problems, Doklady Mathematics, 73(1) (2006) 71-76.
  12. A. S. Makin, On spectral decompositions corresponding to non-self-adjoint Sturm- Liouville operators, Dokl. Math. 73(1) (2006) 15-18.
  13. A. S. Makin, On the basis property of systems of root functions of regular boundary value problems for the Sturm-Liouville operator, Differ. Equ. 42(12) (2006) 1717-1728.
  14. Kh.R. Mamedov, On the basis property in Lp(0;
  15. of the root functions of a class non self adjoint Sturm-Liouville operators, Eur. J. Pure Appl. Math. 3(5) (2010) 831-838.
  16. Kh.R. Mamedov, H.Menken, On the basisness in L 2 (0;
  17. of the root functions in not strongly regular boundary value problems, Eur. J. Pure Appl. Math. 1(2) (2008) 51-60.
  18. H. Menken, Kh.R. Mamedov, Basis property in Lp(0;
  19. of the root functions corre- sponding to a boundary-value problem, J. Appl. Funct. Anal. 5(4) (2010) 351-356.
  20. V. P. Mikhailov, On Riesz bases in L 2 [0, 1], Dokl. Akad. Nauk USSR, 114(5) (1962) 981-984.
  21. M. A. Naimark, Linear Differential Operators, George G. Harap&Company, 1967.
  22. C. Nur, O.A. Veliev, On the Basis Property of the Root Functions of Some Class of Non-self-adjoint Sturm-Liouville Operators, arXiv:1301.7043.
  23. A. A. Shkalikov, On the Riesz basis property of the root vectors of ordinary differential operators, Russian Math. Surveys, 34(5) (1979) 249-250.
  24. A. A. Shkalikov, On the basis property of the eigenfunctions of ordinary differential operators with integral boundary conditions, Vestnik Moscow University, Ser. Mat. Mekh. 37(6) (1982) 12-21.
  25. A. A. Shkalikov, O. A. Veliev, On the Riesz basis property of the eigen-and associated functions of periodic and antiperiodic Sturm-Liouville problems, Math. Notes, 85(5) (2009) 647-660.
  26. O. A .Veliev, M. Toppamuk Duman, The spectral expansion for a nonself-adjoint Hill operators with a locally integrable potential, Journal of Math. Analysis and Appl. 265 (2002) 76-90.
  27. O. A. Veliev, On the Nonself-adjoint Ordinary Differential Operators with Periodic Boundary Conditions. Israel Journal of Mathematics, 176 (2010) 195-208.
  28. O. A. Veliev, On the basis property of the root functions of differential operators with matrix coefficients, Central European Journal of Mathematics, 9(3) (2011) 657-672.