Machine Learning Approaches for Tackling Novel Coronavirus (COVID-19) Pandemic (original) (raw)
Novel coronavirus (COVID-19) has become a global problem in recent times due to the rapid spread of this disease. Almost all the countries of the world have been affected by this pandemic that made a major consequence on the medical system and healthcare facilities. The healthcare system is going through a critical time because of the COVID-19 pandemic. Modern technologies such as deep learning, machine learning, and data science are contributing to fight COVID-19. The paper aims to highlight the role of machine learning approaches in this pandemic situation. We searched for the latest literature regarding machine learning approaches for COVID-19 from various sources like IEEE Xplore, PubMed, Google Scholar, Research Gate, and Scopus. Then, we analyzed this literature and described them throughout the study. In this study, we noticed four different applications of machine learning methods to combat COVID-19. These applications are trying to contribute in various aspects like helping physicians to make confident decisions, policymakers to take fruitful decisions, and identifying potentially infected people. The major challenges of existing systems with possible future trends are outlined in this paper. The researchers are coming with various technologies using machine learning techniques to face the COVID-19 pandemic. These techniques are serving the healthcare system in a great deal. We recommend that machine learning can be a useful tool for proper analyzing, screening, tracking, forecasting, and predicting the characteristics and trends of COVID-19.