Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles (original) (raw)

Nanotoxicology

Abstract

Abstract Metal oxide nanoparticles (MO-NPs) have unique structural characteristics, exceptionally high surface area, strong mechanical stability, catalytic activities, and are biocompatible. Consequently, MO-NPs have recently attracted considerable interest in the field of imaging-guided therapeutic and biosensing applications. This study aims to develop Quantitative Structure–Activity Relationships (QSAR) for the prediction of cell viability of MO-NPs. The QSAR model based on the so-called optimal descriptors which calculated with a simplified molecular input-line entry system (SMILES). The Monte Carlo technique applied to calculate correlation weights for SMILES fragments. Factually, the optimal descriptor for SMILES is the summation of the correlation weights. The model of cytotoxicity is one variable correlation between cytotoxicity and the above optimal descriptor. The Correlation Intensity Index (CII) is a possible criterion of the predictive potential of the model. Applying the CII as a component of the target function in the Monte Carlo optimization routine, employed by the CORAL program, that is designed to find a predictive relationship between the optimal descriptor and cytotoxicity of MO-NPs, improves the statistical quality of the model. The significance of different eclectic features, in terms of whether they increase/decrease cell viability, i.e. decrease or increase cytotoxicity, is also discussed. Numerical data on 83 experimental samples of MO-NPs activity under different conditions taken from the literature are applied for the “nano-QSAR” analysis.

shahin ahmadi hasn't uploaded this paper.

Let shahin know you want this paper to be uploaded.

Ask for this paper to be uploaded.