Asymptotic analysis of combined breather–kink modes in a Fermi–Pasta–Ulam chain (original) (raw)

Asymptotic dynamics of breathers in Fermi-Pasta-Ulam chains

Physical Review E, 2002

We carry out a numerical study of the asymptotic dynamics of breathers in finite Fermi-Pasta-Ulam chains at zero and nonzero temperatures. While at zero temperature such breathers remain essentially stationary and decay extremely slowly over wide parameter ranges, thermal fluctuations tend to lead to breather motion and more rapid decay. In both cases the decay is essentially exponential over long time intervals.

The two-stage dynamics in the Fermi-Pasta-Ulam problem: From regular to diffusive behavior

Chaos: An Interdisciplinary Journal of Nonlinear Science, 2011

A numerical and analytical study of the relaxation to equilibrium of both the Fermi-Pasta-Ulam (FPU) α-model and the integrable Toda model, when the fundamental mode is initially excited, is reported. We show that the dynamics of both systems is almost identical on the short term, when the energies of the initially unexcited modes grow in geometric progression with time, through a secular avalanche process. At the end of this first stage of the dynamics the time-averaged modal energy spectrum of the Toda system stabilizes to its final profile, well described, at low energy, by the spectrum of a q-breather. The Toda equilibrium state is clearly shown to describe well the long-living quasi-state of the FPU system. On the long term, the modal energy spectrum of the FPU system slowly detaches from the Toda one by a diffusive-like rising of the tail modes, and eventually reaches the equilibrium flat shape. We find a simple law describing the growth of tail modes, which enables us to estimate the time-scale to equipartition of the FPU system, even when, at small energies, it becomes unobservable.

Effect of discrete breathers on macroscopic properties of the Fermi-Pasta-Ulam chain

European Physical Journal B, 2020

The effect of discrete breathers (DBs) on macroscopic properties of the Fermi-Pasta-Ulam chain with symmetric and asymmetric potentials is investigated. The total to kinetic energy ratio (related to specific heat), stress (related to thermal expansion), and Young's modulus are monitored during the development of modulational instability of the zone boundary mode. The instability results in the formation of chaotic DBs followed by the transition to thermal equilibrium when DBs disappear due to energy radiation in the form of small-amplitude phonons. It is found that DBs reduce the specific heat for all the considered chain parameters. They increase the thermal expansion when the potential is asymmetric and, as expected, thermal expansion is not observed in the case of symmetric potential. The Young's modulus in the presence of DBs is smaller than in thermal equilibrium for the symmetric potential and for the potential with a small asymmetry, but it is larger than in thermal equilibrium for the potential with greater asymmetry. Our results can be useful for setting experiments on the identification of DBs in crystals by measuring their macroscopic properties.