The role of tissue factor in thrombosis and hemostasis (original) (raw)
Related papers
Tissue factor: newer concepts in thrombosis and its role beyond thrombosis and hemostasis
Cardiovascular Diagnosis and Therapy
For many years, the attention on tissue factor (TF) in human pathophysiology has been limited to its role as initiator of extrinsic coagulation pathway. Moreover, it was described as a glycoprotein located in several tissue including vascular wall and atherosclerotic plaque. However, in the last two decades, the discovery that TF circulates in the blood as cell-associated protein, microparticles (MPs) bound and as soluble form, is changing this old vessel-wall TF dogma. Moreover, it has been reported that TF is expressed by different cell types, even T lymphocytes and platelets, and different pathological conditions, such as acute and chronic inflammatory status, and cancer, may enhance its expression and activity. Thus, recent advances in the biology of TF have clearly indicated that beyond its known effects on blood coagulation, it is a "true surface receptor" involved in many intracellular signaling, cell-survival, gene and protein expression, proliferation, angiogenesis and tumor metastasis. Finally, therapeutic modulation of TF expression and/ or activity has been tested with controversial results. This report, starting from the old point of view about TF as initiator of extrinsic coagulation pathway, briefly illustrates the more recent concepts about TF and thrombosis and finally gives an overview about its role beyond thrombosis and haemostasis focusing on the different intracellular mechanisms triggered by its activation and potentially involved in atherosclerosis.
Tissue Factor in Coagulation: Which? Where? When? Arterioscler Thromb Vasc Biol
2009
Tissue factor (TF) is an integral membrane protein, normally separated from the blood by the vascular endothelium, which plays a key role in the initiation of blood coagulation. With a perforating vascular injury, TF becomes exposed to blood and binds plasma factor VIIa. The resulting complex initiates a series of enzymatic reactions leading to clot formation and vascular sealing. In some pathologic states, circulating blood cells express TF as a result of exposure to an inflammatory stimulus leading to intravascular clotting, vessel occlusion and thrombotic pathology. Numerous controversies have arisen related to the influence of structural features of TF, its presentation and its function. There are contradictory reports about the synthesis and presentation of TF on blood cells and the presence (or absence) of functionally active TF circulating in normal blood either on microparticles or as a soluble protein. In this review we discuss TF structure-function relationships and the ro...
Physiological research / Academia Scientiarum Bohemoslovaca, 2008
Tissue factor is a cell surface protein that is expressed constitutively by monocytes, macrophages and fibroblasts, but also by some other cells in response to a variety of stimuli. The main function of the tissue factor is to form a complex with factor VII/VIIa that converts factors IX and X to their active forms. Tissue factor is also involved in the pathophysiology of systemic inflammatory disorders, coagulopathies, atherosclerotic disease, tumor angiogenesis and metastasis. Increased tissue factor expression either locally in the coronary plaques or systematically on circulating blood elements of patients with acute coronary syndromes may be responsible for increased thrombin generation, thus leading to platelet activation and fibrin formation. Tissue factor therefore plays a pivotal role in the initiation of thrombotic complications in patients with coronary artery disease.
Butenas et al Tissue Factor in Coagulation : Which ? Where ? When ? 1991
2009
Tissue factor (TF) is an integral membrane protein, normally separated from the blood by the vascular endothelium, which plays a key role in the initiation of blood coagulation. With a perforating vascular injury, TF becomes exposed to blood and binds plasma factor VIIa. The resulting complex initiates a series of enzymatic reactions leading to clot formation and vascular sealing. In some pathological states, circulating blood cells express TF as a result of exposure to an inflammatory stimulus leading to intravascular clotting, vessel occlusion, and thrombotic pathology. Numerous controversies have arisen related to the influence of structural features of TF, its presentation, and its function. There are contradictory reports about the synthesis and presentation of TF on blood cells and the presence (or absence) of functionally active TF circulating in normal blood either on microparticles or as a soluble protein. In this review we discuss TF structure-function relationships and th...
Cardiovascular Drug Reviews, 2006
Tissue factor pathway inhibitor (TFPI) is a multivalent, Kunitz-type plasma proteinase inhibitor that modulates tissue factor-dependent coagulation in vivo. TFPI possesses a peculiar two-step mechanism of action; it directly inhibits activated factor X and subsequently produces feedback inhibition of the factor VIIa/tissue factor catalytic complex in a factor Xa-dependent fashion. TFPI biochemistry and physiology have been extensively studied during the last decade. Its pathophysiologic role in thrombotic disorders has, however, only recently started to be unraveled. In particular, circulating plasma TFPI levels have been found to modulate the activity of the tissue factor-dependent coagulation cascade. In animal models, neutralization of circulating TFPI activity results in restoration of intravascular thrombus formation previously abolished by aspirin. In patients with acute myocardial infarction, TFPI plasma levels measured in blood samples obtained from the coronary sinus were significantly lower than those measured in blood obtained from the ascending aorta, indicating acute consumption of TFPI within the coronary circulation of patients with intracoronary thrombosis. Finally, recent data indicate that transfection of the arterial wall with the gene coding for TFPI is an effective therapeutic intervention to prevent intravascular thrombus formation. Taken together, these observations underline the pathophysiologic importance of TFPI in regulating the procoagulant activity of tissue factor and open new potential therapeutic approaches for the treatment of thrombotic disorders.
Tissue factor in atherosclerosis
Atherosclerosis, 1999
Thrombosis is a key feature of the initiation and progression of atherosclerosis and its clinical sequelae. Acute thrombosis can lead to arterial occlusion and consequently provoke myocardial infarction, unstable angina, stroke and sudden death. Acute thrombosis can also be a complication of arterial bypass surgery, balloon angioplasty, atherectomy, or coronary artery stenting. The thrombotic response is influenced by several factors, among them the thrombogenicity of the vessel wall and of certain blood components as well as their interaction with the lipid pool. Tissue factor (TF) is considered to be the primary cofactor of cellular origin that is involved in activation of the coagulation pathway. The active form of TF has been shown to be present in specimens of human coronary artery in association both with acellular lipid areas and with macrophages and smooth muscle cells, which suggests that TF plays a major role in determining plaque thrombogenicity. We discuss here what is currently known about the role of tissue factor in atherogenesis, and focus attention on pharmacological approaches in this area.
Tissue Factor in Coagulation: Which? Where? When?
Arteriosclerosis, Thrombosis, and Vascular Biology, 2009
Tissue factor (TF) is an integral membrane protein, normally separated from the blood by the vascular endothelium, which plays a key role in the initiation of blood coagulation. With a perforating vascular injury, TF becomes exposed to blood and binds plasma factor VIIa. The resulting complex initiates a series of enzymatic reactions leading to clot formation and vascular sealing. In some pathological states, circulating blood cells express TF as a result of exposure to an inflammatory stimulus leading to intravascular clotting, vessel occlusion, and thrombotic pathology. Numerous controversies have arisen related to the influence of structural features of TF, its presentation, and its function. There are contradictory reports about the synthesis and presentation of TF on blood cells and the presence (or absence) of functionally active TF circulating in normal blood either on microparticles or as a soluble protein. In this review we discuss TF structure-function relationships and the role of TF during various phases of the blood coagulation process. We also highlight controversies concerning the expression/presence of TF on various cells and in blood in normal and pathological states.
Tissue factor in thrombosis and hemorrhage
Surgery, 2007
The research aims of our laboratory are to provide a realistic description of biologic processes involved in protection from hemorrhage and the evolution of thrombosis. To evaluate these processes, we use 4 models of coagulation ranging from 1) studies of blood exiting from microvascular wounds in humans through 2) minimally altered whole blood induced to clot by tissue factor (TF) to 3) reconstitution of the blood coagulation proteome with purified components and to 4) mathematical descriptions of the chemical processes and dynamics that occur. The integration of these 4 models permits comprehensive analyses of the blood coagulation system and predictions of its behavior under normal and pathologic conditions. Data accumulated thus far have led to advances in our understanding of 1) the processes occurring during the initiation and propagation phases of thrombin generation, 2) the roles for individual proteins involved in blood coagulation and its regulation, 3) defects in thrombin generation and clot formation in hemophilia, 4) actions and limitations of pharmacologic agents used to control hemorrhage, thrombosis, and chronic cardiovascular disease, and 5) the relationship between genotypic and phenotypic features of an individual's plasma proteome and his/her immediate and long-term thrombotic risk. 142:S2-S14.)
The Tissue Factor Requirement in Blood Coagulation
Journal of Biological Chemistry, 2005
Formation of thrombin is triggered when membrane-localized tissue factor (TF) is exposed to blood. In closed models of this process, thrombin formation displays an initiation phase (low rates of thrombin production cause platelet activation and fibrinogen clotting), a propagation phase (>95% of thrombin production occurs) and a termination phase (prothrombin activation ceases and free thrombin is inactivated). A current controversy centers on whether the TF stimulus requires supplementation from a circulating pool of blood TF in order to sustain an adequate procoagulant response. We have evaluated the requirement for TF during the progress of the blood coagulation reaction and have extended these analyses to assess the requirement for TF during resupply ("flow replacement"). Elimination of TF activity at various times during the initiation phase indicated: a period of absolute dependence (<10s); a transitional period in which the dependence on TF is partial and decreases as the reaction proceeds (10-240s); and a period in which the progress of the reaction is TF independent (>240s). Resupply of reactions late during the termination phase with fresh reactants, but no TF, yielded immediate bursts of thrombin formation similar in magnitude to the original propagation phases. Our data show that independence from the initial TF stimulus is achieved by the onset of the propagation phase and that the ensemble of coagulation products and intermediates which yield this TF independence maintain their prothrombin-activating potential for considerable time. These observations support the hypothesis that the transient, localized expression of TF is sufficient to sustain a TF-independent procoagulant response as long as flow persists.