Chapter 9 Gene Delivery by Hydroxyapatite and Calcium Phosphate Nanoparticles : A Review of Novel and Recent Applications (original) (raw)

2018

Gene therapy is a targeted therapy which can be used in the treatment of various acquired and inherited diseases. Inhabitation of a gene function, restoring or improving a gene, or gaining a new function can be achieved by gene therapy strategies. The most crucial step in this therapy is delivering the therapeutic material to the target. Nanosized calcium phosphates (CaPs) have been considered as promising carriers due to their excellent biocompatibility. In this chapter, the delivery of DNA, siRNA, and miRNA by using CaP nanocarriers were compiled in detail and the main parameters which can affect the carrier properties and thus the gene transfer efficiency were also discussed.

Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells

Lipid coated calcium phosphate (LCP) nanoparticles (NPs) remain an attractive option for siRNA systemic delivery. Previous research has shown that the stoichiometry of reactants affects the size and morphology of nanostructured calcium phosphate (CaP) particles. However, it is unclear how synthesis parameters such as the Ca/P molar ratio and mixing style influence the siRNA loading and protection by LCP NPs, and subsequent siRNA delivery efficiency. In this research, we found that the Ca/P molar ratio is critical in controlling the size, zeta potential, dispersion state, siRNA loading and protection. Based on the siRNA loading efficiency and capacity as well as siRNA protection effectiveness, we suggested an optimized LCP NPs delivery system. The optimized LCP NPs had a hollow, spherical structure with the average particle size of B40 nm and were able to maintain their stability in serum containing media and PBS for over 24 h, with a pH-sensitive dissolution property. The superior ability of optimized LCP NPs to maintain the integrity of encapsulated siRNA and the colloidal stability in culture medium allow this formulation to achieve improved cellular accumulation of siRNA and enhanced growth inhibition of human breast cancer cells in vitro, compared with the commercial transfection agent Oligofectamine TM .

REVIEW ARTICLE *Corresponding Author: Calcium Based Non-viral Gene Delivery: An Overview of Methodology and Applications

2010

Application of therapeutic gene transfer in the treatment of genetic diseases is a notable progress but there are some disadvantages and limitations in it. The process of overcoming these barriers is a drastic change in gene delivery. Recently, calcium phosphate nanoparticles alone, or in combination with viral and nonviral vectors, were found to have a positive effect on gene transfer especially when incorporated in the colloidal particulate systems. This review elaborates on various successful methods of using calcium phosphate nanoparticles in gene delivery, which are considered an advancing approach to gene delivery.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.