The Potential Consequences of Fluid Fasting Time on Hypotension During Pediatric Sedation While Using Propofol (original) (raw)
Related papers
Pediatric Emergency Care, 2003
Objectives: To describe our experience using propofol sedation to facilitate elective diagnostic and therapeutic procedures, and to document the safety profile of propofol in this setting. Design: Retrospective consecutive case series and review of the literature. Setting: Pediatric intensive care unit of a United States Navy tertiary care medical center. Patients: Children receiving propofol for procedural sedation over an 18-month period. Outcome Measures: Descriptive features of sedation including adverse events. Results: During the study period, 91 children received propofol to facilitate the performance of 110 medical procedures. The mean induction dose was 2.41 mg/kg, the mean infusion rate was 179.3 mg/ kg/min, and the mean total dose of propofol administered was 4.23 mg/kg. In all cases, sedation was successfully achieved. The average length of stay in the PICU was 108.4 minutes. Three children (3.3%) had transient episodes of oxygen desaturation that improved with repositioning of the airway. No child required placement of an endotracheal tube. Three (3.3%) children experienced hypotension requiring a decrease in the infusion rate of propofol and a 10-mL/kg bolus infusion of normal saline. No cardiac arrhythmias or adverse neurologic effects secondary to propofol infusion were identified. Conclusions: Pediatric intensivists can safely and effectively administer propofol to facilitate the performance of diagnostic and therapeutic procedures outside the operating room setting.
Propofol decreases cerebral blood flow velocity in anesthetized children
Canadian Journal of Anesthesia/Journal canadien d'anesthésie, 2002
P Pu ur rp po os se e: : Propofol, by virtue of its favourable pharmacokinetic profile, is suitable for maintenance of anesthesia by continuous infusion during neurosurgical procedures in adults. It is gaining popularity for use in pediatric patients. To determine the effects of propofol on cerebral blood flow in children, middle cerebral artery blood flow velocity (Vmca) was measured at different levels of propofol administration by transcranial Doppler (TCD) sonography.
British Journal of Clinical Pharmacology, 2002
This paper describes the pharmacokinetics and effects of propofol in short-term sedated paediatric patients. Six mechanically ventilated children aged 1-5 years received a 6 h continuous infusion of propofol 6% at the rate of 2 or 3 mg kg-1 h-1 for sedation following cardiac surgery. A total of seven arterial blood samples was collected at various time points during and after the infusion in each patient. Pharmacokinetic modelling was performed using NONMEM. Effects were assessed on the basis of the Ramsay sedation score as well as a subjective sedation scale. The data were best described by a two-compartment pharmacokinetic model. In the model, body weight was a significant covariate for clearance. Pharmacokinetic parameters in the weight-proportional model were clearance (CL) = 35 ml kg-1 min-1, volume of central compartment (V1) = 12 l, intercompartmental clearance (Q) = 0.35 l min-1 and volume of peripheral compartment (V2) = 24 l. The interindividual variabilities for these parameters were 8%, < 1%, 11% and 35%, respectively. Compared with the population pharmacokinetics in adults following cardiac surgery and when normalized for body weight, statistically significant differences were observed the parameters CL and V1 (35 vs 29 ml kg-1 min-1 and 0.78 vs 0.26 l kg-1P < 0.05), whereas the values for Q and V2 were similar (23 vs 18 ml kg-1 min-1 and 1.6 vs 1.8 l kg-1, P > 0.05). In children, the percentage of adequately sedated patients was similar compared with adults (50% vs 67%) despite considerably higher propofol concentrations (1.3 +/- 0.10 vs 0.51 +/- 0.035 mg l-1, mean +/- s.e. mean), suggesting a lower pharmacodynamic sensitivity to propofol in children. In children aged 1-5 years, a pharmacokinetic model for propofol was described using sparse data. In contrast to adults, body weight was a significant covariate for clearance in children. The model may serve as a useful basis to study the role of covariates in the pharmacokinetics and pharmacodynamics of propofol in paediatric patients of different ages.
Pediatrics, 1999
Objectives. To describe our experience with propofol anesthesia to facilitate invasive procedures for ambulatory and hospitalized children in the pediatric intensive care unit (PICU) setting. Methods. We retrospectively reviewed the hospital records of 115 children who underwent 251 invasive procedures with propofol anesthesia in our multidisciplinary, university-affiliated PICU during a 20-month period. All patients underwent a medical evaluation and were required to fast before anesthesia. Continuous monitoring of the patient's cardiorespiratory and neurologic status was performed by a pediatric intensivist, who also administered propofol in intermittent boluses to obtain the desired level of anesthesia, and by a PICU nurse, who provided written documentation. Data on patient demographics, procedures performed, doses of propofol used, the occurrence of side effects, induction time, recovery time, and length of stay in the PICU were obtained. Results. Propofol anesthesia was performed successfully in all children (mean age, 6.4 years; range, 10 days to 20.8 years) who had a variety of underlying medical conditions, including oncologic, infectious, neurologic, cardiac, and gastrointestinal disorders. Procedures performed included lumbar puncture with intrathecal chemotherapy administration, bone marrow aspiration and biopsy, central venous catheter placement, endoscopy, and transesophageal echocardiogram. The mean dose of propofol used for induction of anesthesia was 1.8 mg/kg, and the total mean dose of propofol used was 8.8 mg/kg. In 13% of cases, midazolam also was administered but did not affect the doses of propofol used. The mean anesthesia induction time was 3.9 minutes, and the mean recovery time from anesthesia was 28.8 minutes for all patients. The mean PICU stay for ambulatory and ward patients was 140 minutes. Hypotension occurred in 50% of cases, with a mean decrease in systolic blood pressure of 25%. The development of hypotension was not associated with propofol doses, the concomitant use of midazolam, or the duration of anesthesia, but was associated with older patient age. Hypotension was transient and not associated with altered perfusion. Intravenous fluid was administered in 61% of the cases in which hypotension was present. Respiratory depression requiring transient bag-valve-mask ventilation occurred in 6% of cases and was not associated with patient age, propofol doses, concomitant use of midazolam, or the duration of anesthesia. Transient myoclonus was observed in 3.6% of cases. Ninety-eight percent of procedures were completed successfully, and no procedure failures were considered secondary to the anesthesia. Patients, parents, and health care providers were satisfied with the results of propofol anesthesia. Conclusions. Propofol anesthesia can safely facilitate a variety of invasive procedures in ambulatory and hospitalized children when performed in the PICU and is associated with short induction and recovery times and PICU length of stay. Hypotension, although usually transient, is common, and respiratory depression necessitating assisted ventilation may occur. Therefore, appropriate monitoring and cardiorespiratory support capabilities are essential. Propofol anesthesia in the PICU setting is a reasonable therapeutic option available to pediatric intensivists to help facilitate invasive procedures in ambulatory and hospitalized children. Pediatrics 1999;103(3).
Continuous infusion of propofol for sedation of pediatric patients following open-heart surgery
Critical Care
Background: Whole body hyperthermia induced by radiative systems has been used in therapy of malignant diseases for more than ten years. Von Ardenne and co-workers have developed the 'systemiche Krebs-Mehrschritt-Therapic' (sKMT), a combined regime including whole body hyperthermia of 42°C, induced hyperglycaemia and relative hyperoxaemia with additional application of chemotherapy. This concept has been employed in a phase I/II clinical study for patients with metastatic colorectal carcinoma at the Virchow-Klinikum since January 1997. Methods: The sKMT concept was performed eleven times under intravenous general anaesthesia, avoiding volatile anaesthetics. Core temperatures of up to 42°C were reached stepwise by warming with infrared-A-radiation (IRATHERM 2000®). During the whole procedure blood glucose levels of 380-450 mg/dl were maintained as well as PaO 2 levels above 200 mmHg. Extensive invasive monitoring was performed in all patients including measurements with the REF-Ox-Pulmonary artery catheter with continuous measuring of mixed venous saturation (Baxter Explorer®) and invasive monitoring of arterial blood pressure. Data for calculation of hemodynamic and gas exchange parameters were collected four times, at temperatures of 37°C, 40°C, 41.8-42°C and 39°C, during measurements FiO 2 was 1.0 at all times. Fluids were given in order to keep central-venous and Wedge pressure within normal range during the whole procedure. Statistics were performed using the Wilcoxon Test. Results: Statistically significant differences were found between heart rate, cardiac index and systemic vascular resistance comparing data at 37°C and 42°C. Heart rate and cardiac index increased to a maximum at 42°C (P < 0.0001) whereas systemic vascular resistance had its minimum at 42°C (P < 0.0001). Mean arterial pressure dropped with increasing temperature, differences were not significant. Calculation of stroke volume index and ventricular volumes showed only a slight decrease in endsystolic volumes with increasing temperature, the resulting differences in right ventricular ejection fraction were marginally significant (P = 0.038) comparing 42°C to baseline. Right ventricular stroke work index as well as mean pulmonary arterial pressure increased at 42°C (P = 0.0115 and P = 0.0037), pulmonary vascular resistance only dropped little compared to systemic vascular resistance, left ventricular stroke work index even dropped with increasing temperature, though showing no significant difference. Values for mixed venous oxygen saturation did not vary during therapy, pulmonary right-left shunt showed a temperature associated increase (P = 0.0323) to a maximum at 42°C. Conclusion: Under the procedure of sKMT cardiac function in patients, who do not have any pre-existing cardiac impairment, can be maintained almost unchanged, ie with normal right and left ventricular pressure, despite an increase in right ventricular stroke work Acknowledegment: Supported by Deutsche Krebshilfe.
Saudi Journal of Anaesthesia, 2014
Our study compared the discharge time after pediatric magnetic resonance imaging (MRI) following sedation with propofol infusion dose of 100, 75 and 50 mcg/ kg/min given after a bolus dose of ketamine and propofol. Materials and Methods: One hundred children of American Society of Anesthesiologists status 1/2, aged 6 months to 8 years, scheduled for elective MRI were enrolled and randomized to three groups to receive propofol infusion of 100, 75 or 50 mcg/kg/min (Groups A, B, and C, respectively). After premedicating children with midazolam 0.05 mg/kg intravenous (i.v.), sedation was induced with bolus dose of ketamine and propofol (1 mg/kg each) and the propofol infusion was connected. During the scan, heart rate, noninvasive blood pressure, respiratory rate, and oxygen saturation were monitored. Results: The primary outcome that is, discharge time was shortest for Group C (44.06 ± 18.64 min) and longest for Group A (60.00 ± 18.66 min), the difference being statistically and clinically significant. The secondary outcomes that is, additional propofol boluses, scan quality and awakening time were comparable for the three groups. The systolic blood pressure at 20, 25 and 30 min was significantly lower in Groups A and B compared with Group C. The incidence of sedation related adverse events was highest in Group A and least in Group C. Conclusion: After a bolus dose of ketamine and propofol (1 mg/ kg each), propofol infusion of 50 mcg/kg/min provided sedation with shortest discharge time for MRI in children premedicated with midazolam 0.05 mg/kg i.v. It also enabled stable hemodynamics with less adverse events.
Anesthesiology, 2006
Background To support safe and effective use of propofol in nonventilated children after major surgery, a model for propofol pharmacokinetics and pharmacodynamics is described. Methods After craniofacial surgery, 22 of the 44 evaluated infants (aged 3-17 months) in the pediatric intensive care unit received propofol (2-4 mg . kg-1 . h-1) during a median of 12.5 h, based on the COMFORT-Behavior score. COMFORT-Behavior scores and Bispectral Index values were recorded simultaneously. Population pharmacokinetic and pharmacodynamic modeling was performed using NONMEM V (GloboMax LLC, Hanover, MD). Results In the two-compartment model, body weight (median, 8.9 kg) was a significant covariate. Typical values were Cl = 0.70 . (BW/8.9)0.61 l/min, Vc = 18.8 l, Q = 0.35 l/min, and Vss = 146 l. In infants who received no sedative, depth of sedation was a function of baseline, postanesthesia effect (Emax model), and circadian night rhythm. In agitated infants, depth of sedation was best describe...