Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system (original) (raw)
Related papers
Discrete solution of the electrokinetic equations
The Journal of Chemical Physics, 2004
We present a robust scheme for solving the electrokinetic equations. This goal is achieved by combining the lattice-Boltzmann method (LB) with a discrete solution of the convection-diffusion equation for the different charged and neutral species that compose the fluid. The method is based on identifying the elementary fluxes between nodes, which ensures the absence of spurious fluxes in equilibrium. We show how the model is suitable to study electro-osmotic flows. As an illustration, we show that, by introducing appropriate dynamic rules in the presence of solid interfaces, we can compute the sedimentation velocity (and hence the sedimentation potential) of a charged sphere.
An energy-preserving discretization for the Poisson–Nernst–Planck equations
Journal of Computational Electronics, 2017
The Poisson-Nernst-Planck (PNP) equations have recently been used to describe the dynamics of ion transport through biological ion channels besides being widely employed in semiconductor industry. This paper is about the design of a numerical scheme to solve the PNP equations that preserves exactly (up to roundoff error) a discretized form of the energy dynamics of the system. The proposed finite difference scheme is of second-order accurate in both space and time. Comparisons are made between this energy dynamics-preserving scheme and a standard finite difference scheme, showing a difference in satisfying the energy law. Numerical results are presented for validating the orders of convergence in both time and space of the new scheme for the PNP system.
A conservative finite difference scheme for Poisson–Nernst–Planck equations
Journal of Computational Electronics, 2013
Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
The finite element approximation of the nonlinear Poisson-Boltzmann equation
2007
A widely used electrostatics model in the biomolecular modeling community, the nonlinear Poisson-Boltzmann equation, along with its finite element approximation, are analyzed in this paper. A regularized Poisson-Boltzmann equation is introduced as an auxiliary problem, making it possible to study the original nonlinear equation with delta distribution sources. A priori error estimates for the finite element approximation are obtained for the regularized Poisson-Boltzmann equation based on certain quasi-uniform grids in two and three dimensions. Adaptive finite element approximation through local refinement driven by an a posteriori error estimate is shown to converge. The Poisson-Boltzmann equation does not appear to have been previously studied in detail theoretically, and it is hoped that this paper will help provide molecular modelers with a better foundation for their analytical and computational work with the Poisson-Boltzmann equation. Note that this article apparently gives the first rigorous convergence result for a numerical discretization technique for the nonlinear Poisson-Boltzmann equation with delta distribution sources, and it also introduces the first provably convergent adaptive method for the equation. This last result is currently one of only a handful of existing convergence results of this type for nonlinear problems. References 21
Modeling electrochemical systems with weakly imposed Dirichlet boundary conditions
ArXiv, 2020
Finite element modeling of charged species transport has enabled analysis, design and optimization of a diverse array of electrochemical and electrokinetic devices. These systems are represented by the Poisson-Nernst-Plank equations coupled with the Navier-Stokes equation, with a key quantity of interest being the current at the system boundaries. Accurately computing the current flux is challenging due to the small critical dimension of the boundary layers (small Debye layer) that require fine mesh resolution at the boundaries. We resolve this challenge by using the Dirichlet-to-Neumann transformation to weakly impose the Dirichlet conditions for the Poisson-Nernst-Plank equations. The results obtained with weakly imposed Dirichlet boundary conditions showed excellent agreement with those obtained when conventional boundary conditions with highly resolved mesh were employed. Furthermore, the calculated current flux showed faster mesh convergence using weakly imposed conditions comp...
Asymptotic analysis of the Poisson–Boltzmann equation describing electrokinetics in porous media
Nonlinearity, 2013
We consider the Poisson-Boltzmann equation in a periodic cell, representative of a porous medium. It is a model for the electrostatic distribution of N chemical species diluted in a liquid at rest, occupying the pore space with charged solid boundaries. We study the asymptotic behavior of its solution depending on a parameter β which is the square of the ratio between a characteristic pore length and the Debye length. For small β we identify the limit problem which is still a nonlinear Poisson equation involving only one species with maximal valence, opposite to the average of the given surface charge density. This result justifies the Donnan effect, observing that the ions for which the charge is the one of the solid phase are expelled from the pores. For large β we prove that the solution behaves like a boundary layer near the pore walls and is constant far away in the bulk. Our analysis is valid for Neumann boundary conditions (namely for imposed surface charge densities) and establishes rigorously that solid interfaces are uncoupled from the bulk fluid, so that the simplified additive theories, such as the one of the popular Derjaguin, Landau, Verwey and Overbeek (DLVO) approach, can be used. We show that the asymptotic behavior is completely different in the case of Dirichlet boundary conditions (namely for imposed surface potential).
A first‐order system least‐squares finite element method for the Poisson‐Boltzmann equation
2010
Abstract The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson-Boltzmann equation. We expose the flux directly through a first-order system form of the equation. Using this formulation, we propose a system that yields a tractable least-squares finite element formulation and establish theory to support this approach.