Chitin Fibre Formation by the Solution Blow Spinning Method, Using 1-butyl- 3-methylimidazolium Acetate Ionic Liquid as a Solvent (original) (raw)
Related papers
Multifilament cellulose/chitin blend yarn spun from ionic liquids
Cellulose and chitin, both biopolymers, decompose before reaching their melting points. Therefore, processing these unmodified biopolymers into multifilament yarns is limited to solution chemistry. Especially the processing of chitin into fibers is rather limited to distinctive, often toxic or badly removable solvents often accompanied by chemical de-functionalization to chitosan (degree of acetylation, DA, <50%). This work proposes a novel method for the preparation of cellulose/chitin blend fibers using ionic liquids (ILs) as gentle, removable, recyclable and non-deacetylating solvents. Chitin and cellulose are dissolved in ethylmethylimidazolium propionate ([C2mim] + [OPr] −) and the obtained one-pot spinning dope is used to produce multifilament fibers by a continuous wet-spinning process. Both the rheology of the corresponding spinning dopes and the structural and physical properties of the obtained fibers have been determined for different biopolymer ratios. With respect to medical or hygienic application, the cellulose/chitin blend fiber show enhanced water retention capacity compared to pure cellulose fibers.
Modification of Chitin Particles with Ionic Liquids Containing Ethyl Substituent in a Cation
Advances in Materials Science and Engineering
Chitin cannot be dissolved in conventional solvents due to the strong inter- and intrasheet network of hydrogen bonds and the large number of crystalline regions. Some ionic liquids (ILs) have been suggested in the literature as possible solvents for chitin. Seven of them, all having an ethyl group as substituent in the cationic ring, have been tested in this work: [Emim][Cl], [Emim][Br], [Emim][I], [Emim][OAc], [Emim][Lact], [Epyr][I], and [EMS][BFSI]. Chitin was insoluble in [EMS][BFSI] while for all other ILs solubility was limited due to high viscosity of solutions and equilibria have not been reached. Changes in physical structure, particle size distribution, and crystallinity of recovered chitin depended on ionic liquid used. Increase in porosity was observed for chitin treated with [Emim][Cl], [Emim][I], [Emim][Br], and [Emim][Lact]; changes in particle size distribution were observed for [Emim][AcOH] and [EMS][BFSI]; increase in crystallinity was noticed for chitin treated w...
Cellulose-based fiber spinning processes using ionic liquids
Cellulose, 2022
Cellulose, a natural, renewable, and environment friendly biopolymer, has been considered as a sustainable feedstock in the near future. However, only 0.3% of cellulose is today processed since it is not soluble in conventional solvents due to the strong hydrogen bonding network and highly ordered structure. Hence, the search of effective and eco-friendly solvents for cellulose dissolution has been a key pillar for decades. In the recent years, ionic liquids (ILs) have been proposed as green solvents for cellulose and have been applied for the production of cellulose-based fibers. This review aims to focus the attention toward fiber spinning methods of cellulose based on ILs, as well as recent progress in cellulose dissolution using ILs. Moreover, the development of cellulosic fibers blended with other biopolymers, and cellulose composites are presented. Finally, different applications of cellulose fibers and composites are summarized and discussed.
Functionalization of Cellulose and Chitosan in Ionic Liquids
Cellulose Chemistry and Technology, 2020
Chemistry of cellulose in ionic liquids has been briefly reviewed and, accordingly, the phthalation of chitosan in these ionic solvents has been investigated. Chitosan (K) has been reacted at 100 °C for 4 hours with phthalic anhydride (PA) in ionic liquids 1-butyl-3-methylimidazolium acetate (BMIMAc) and 1-butyl-3-methylimidazolium chloride (BMIMCl) in the presence of bases, pyridine and 1,4-diazobicyclo[2.2.2] octane (DABCO), or the phthalation has been catalyzed by N-bromosuccinimide (NBS). Depending on the nature of the reaction components, the samples were prepared with molar ratios of PA to anhydroglucose unit (PA:K) from 3:1 to 10:1, including molar ratios of bases or catalyst to chitosan, ranging also from 3:1 to 10:1. All the reaction products were soluble in dimethyl sulfoxide and dimethylformamide. Both functional groups of chitosan units, -OH and -NH2, reacted, resulting in FTIR confirmed products containing esters, amide, and imide functional groups. Heating the isolated...