Generation, annotation, and analysis of ESTs from midgut tissue of adult female Anopheles stephensi mosquitoes (original) (raw)
Related papers
In depth annotation of the Anopheles gambiae mosquito midgut transcriptome
BMC genomics, 2014
Genome sequencing of Anopheles gambiae was completed more than ten years ago and has accelerated research on malaria transmission. However, annotation needs to be refined and verified experimentally, as most predicted transcripts have been identified by comparative analysis with genomes from other species. The mosquito midgut-the first organ to interact with Plasmodium parasites-mounts effective antiplasmodial responses that limit parasite survival and disease transmission. High-throughput Illumina sequencing of the midgut transcriptome was used to identify new genes and transcripts, contributing to the refinement of An. gambiae genome annotation. We sequenced ~223 million reads from An. gambiae midgut cDNA libraries generated from susceptible (G3) and refractory (L35) mosquito strains. Mosquitoes were infected with either Plasmodium berghei or Plasmodium falciparum, and midguts were collected after the first or second Plasmodium infection. In total, 22,889 unique midgut transcript ...
2015
Background: Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. Results: We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived f...
BMC genomics, 2006
Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs) from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S), rat blood fed (RB), and P. berghei-infected (IRB) mosquitoes at 30 hours after the blood meal, when most parasites would be transforming ookinetes or very early oocysts. The S, RB and IRB libraries contained 1727, 1145 and 1669 high quality ESTs, respectively, averaging 455 nucleotides (nt) in length. They assembled into 1975 consensus sequences--567 contigs and 1408 singletons. Functional annotation was performed to annotate probable molecular functions of the gene products and the biological processes in which they function. Genes represented at high frequency in one or more of the libraries were s...
Transcriptome of the adult female malaria mosquito vector Anopheles albimanus
BMC Genomics, 2012
Background: Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex.
BMC Genomics, 2011
Background The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process. Results In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved. Conclusions Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org), provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species.
2021
Anopheline mosquitoes are the sole vectors for the Plasmodium pathogens responsible for malaria, which is among the oldest and most devastating of human diseases. The continuing global impact of malaria reflects the evolutionary success of a complex vector-pathogen relationship that accordingly has been the long-term focus of both debate and study. An open question in the biology of malaria transmission is the impact of naturally occurring low-level Plasmodium infections of the vector on the mosquito’s health and longevity as well as critical behaviors such as host-preference/seeking. To begin to answer this, we have completed a comparative RNAseq-based transcriptome profile study examining the effect of biologically salient, salivary gland transmission-stage Plasmodium infection on the molecular physiology of Anopheles gambiae s.s. head, sensory appendage, and salivary glands. When compared with their uninfected counterparts, Plasmodium infected mosquitoes exhibit increased transcr...
Scientific reports, 2018
The Plasmodium life cycle within the mosquito involves the gamete, zygote, motile ookinete, and the oocyst stage that supports sporogony and sporozoite formation. We mapped the P. falciparum transcriptome as the parasite progresses through the oocyst stage of development on days 2, 4, 6, and 8 post-P. falciparum infectious blood meal. Through these genomic studies, we identified 212 novel transmission stage biomarkers including genes that are developmentally expressed at a single time point and genes that are pan-developmentally expressed at all four time points in P. falciparum oocysts. Validation of a small subset of genes at the transcriptional and translational level resulted in identification of a signature of genes/proteins that can detect parasites within the mosquito as early as day 2 post-infectious blood meal and can be used to distinguish early versus late stage P. falciparum oocyst development in the mosquito. Currently, circumsporozoite protein (CSP), which is detectabl...
2013
Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences)
Omics : a journal of integrative biology, 2017
Malaria is one of the most debilitating mosquito-borne diseases with high global health burdens. While much of the research on malaria and mosquito-borne diseases is focused on Africa, Southeast Asia accounts for a sizable portion of the global burden of malaria. Moreover, about 50% of the Asian malaria incidence and deaths have been from India. A promising development in this context is that the completion of genome sequence of Anopheles stephensi, a major malaria vector in Asia, offers new opportunities for global health innovation, including the progress in deciphering the vectorial ability of this mosquito species at a molecular level. Moving forward, tissue-based expression profiling would be the next obvious step in understanding gene functions of An. stephensi. We report in this article, to the best of our knowledge, the first in-depth study on tissue-based transcriptomic profile of four important organs (midgut, Malpighian tubules, fat body, and ovary) of adult female An. st...
Single-cell transcriptomics to define Plasmodium falciparum stage-transition in the mosquito midgut
bioRxiv, 2022
Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory vector mosquito provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 hours post blood feeding, including the zygote and ookinete stages. This study revealed the transcriptional trajectories of the ApiAP2 family of transcription factors, and of parasite stress genes in response to the harsh environment of the mosquito midgut. Further, employing structure-based functional predictions we found several upregulated genes predicted to encode intrinsically disordered proteins (IDPs), a category of proteins known for their importance in regulation of transcription, translation and protein-protein interactions. IDPs are known for their antigenic properties a...