Stark–Heegner points and special values of L-series (original) (raw)
Abstract
AI
This paper investigates Stark-Heegner points associated with elliptic curves over real quadratic fields and their relation to special values of L-series. It builds on conjectures regarding the incorporation of these points into class fields of the quadratic fields, proposing generalizations to incorporate twisted special values of the L-series and examining the implications on the Mordell-Weil and Shafarevich-Tate groups. The findings suggest a connection between the vanishing of L-values and the structure of related algebraic groups, highlighting the broader arithmetic applications of Stark-Heegner points.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (18)
- M. Bertolini, H.Darmon. The p-adic L-functions of modular ellip- tic curves. in Mathematics unlimited-2001 and beyond, 109-170, Springer, Berlin, 2001.
- M. Bertolini, H. Darmon. The main conjecture of Iwasawa theory for elliptic curves over anticyclotomic Z p -extensions. Annals of Mathe- matics (2) 162 (2005), no. 1, 1-64.
- M. Bertolini, H. Darmon. The rationality of Stark-Heegner points over genus fields of real quadratic fields. Annals of Mathematics, to appear.
- M. Bertolini, H. Darmon, and P. Green. Periods and points attached to quadratic algebras. MSRI Publ. 49, Cambridge Univ. Press, 323- 367, 2004.
- H. Darmon, Integration on H p × H and arithmetic applications. Ann. of Math. (2) 154 (2001), no. 3, 589-639.
- S. Dasgupta, Stark-Heegner points on modular Jacobians. Ann. Sci- ent. Éc. Norm. Sup., 4e sér., 38 (2005), 427-469.
- H. Darmon, P. Green, Elliptic curves and class fields of real quadratic fields: algorithms and verifications. Experimental Mathematics, 11:1, 2002, 37-55.
- L. Gerritzen, M. van der Put, Shottky Groups and Mumford Curves. Lecture Notes in Mathematics, 817. Springer, Berlin, 1980.
- R. Greenberg, G. Stevens, p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111 (1993), no. 2, 407-447.
- B. H. Gross, D. B. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84 (1986), no. 2, 225-320.
- M. Longo, On the Birch and Swinnerton-Dyer for modular elliptic curves over totally real fields, Ann. Inst. Fourier, to appear.
- J.I. Manin, Parabolic Points and Zeta Functions of Modular Curves. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), no. 1, 19-66.
- B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjec- tures of Birch and Swinnerton-Dyer. Invent. Math. 84 (1986), no. 1, 1-48.
- A. Popa. Central values of Rankin L-series over real quadratic fields. Submitted.
- K. Ribet, Congruence Relations Between Modular Forms. Proceed- ings of the International Congress of Mathematicians, Warsaw, Au- gust 16-24, 1983.
- K. Ribet, On modular representation of Gal( Q/Q) arising from mod- ular forms, Invent. Math. 100 (1990) 431-476.
- J.P. Serre, Trees. Springer, Berlin, 1980.
- A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math. 141 (1995) 443-551.