Decreased expression of adipose CD36 and FATP1 are associated with increased plasma non-esterified fatty acids during prolonged fasting in northern elephant seal pups (Mirounga angustirostris) (original) (raw)
Related papers
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015
Northern elephant seal pups were longitudinally sampled at Año Nuevo State Reserve during the post-weaning fast, in order to evaluate the changes of fatty acid (FA) profiles in serum as well as in the inner and outer layers of blubber. The major FAs of inner and outer blubber layers were broadly similar to those found in NES maternal milk previously measured, suggesting a direct deposit of dietary FAs in the blubber during the suckling period. The outer blubber layer contained more medium-chain monounsaturated FAs that contribute in keeping the fluidity of this tissue at cold temperatures. It was compensated by higher proportions of saturated FAs in the inner blubber layer. The FA signature of inner blubber, the layer that is mainly mobilised during energy deprivation, slightly differed from the signature of serum. There were greater proportions of medium-chain saturated FAs and ω-6 polyunsaturated FAs, and lower proportions of long-chain saturated FAs, medium-chain monounsaturated FAs and long-chain monounsaturated FAs in serum as compared to inner blubber. We also demonstrated that lipophilicity is the main factor governing the mobilisation of FAs from blubber. The least lipophilic FAs were preferentially hydrolysed from blubber, leading to an enrichment of the more lipophilic FAs in this tissue with the progression of the fast. The expression levels of HSL and ATGL, which are two enzymes involved in the lipolytic process, remained stable during the post-weaning fast. This suggests that the pups have developed the enzymatic mechanisms for an efficient lipolysis as soon as the first week of fast.
2014
Metabolic adaptations for extended fasting in wildlife prioritize beta-oxidation of lipids and reduced glucose utilization to support energy metabolism. The pancreatic hormone glucagon plays key roles in regulating glycemia and lipid metabolism during fasting in model species but its function in wildlife species adapted for extended fasting is not well understood. Northern elephant seals (NES) undergo natural fasts of 1-3 months while under constraints of high nutrient demands including lactation and development. We performed a glucagon challenge on lactating, molting and developing NES, early and late in their natural fasts, to examine the impact of this important regulatory hormone on metabolism. Glucagon caused increases in plasma glucose, insulin, fatty acids, ketones and urea, but the magnitude of these effects varied widely with adiposity and life-history stage. The strong impact of adiposity on glucose and insulin responses suggest a potential role for adipose derived factors in regulating hepatic metabolism and pancreatic sensitivity. Elevations in plasma glucose in response to glucagon were strongly associated with increases in protein catabolism, suggesting negative impacts of elevated glucagon on protein sparing. Glucagon promoted rapid ketone accumulation suggesting that low ketoacid levels in NES reflect low rates of production. These results demonstrate strong metabolic impacts of glucagon and support the idea that glucagon levels are downregulated in the context of metabolic adaptation to extended fasting. These results suggest that the regulation of carbohydrate and lipid metabolism in NES changes with adiposity, fasting duration and under various constraints of nutrient demands.
Changes in plasma fatty acids indicate change in nutritional status in developing Weddell seal pups
Polar Biology, 1997
The concentrations and the fatty acid compositions (weight percent) of three plasma lipid fractions (phospholipids, cholesteryl esters, and triacylglycerols) were examined in ®ve Weddell seal pups through suckling, the post-weaning fast and periods of independent foraging. The principal plasma fatty acids in Weddell seal pups during suckling were the same as those previously reported for milk samples collected from lactating Weddell seals. In contrast to the stable milk fatty acid composition suggested by the previous study, sig-ni®cant changes in the fatty acid composition of plasma lipids occurred during suckling. These included an increase in the weight% of 20:4(n-6) and 18:0 in phospholipids, an increase of 20:4(n-6) in cholesteryl esters, and an increase of 20:1(n-9) and a decrease of 20:5(n-3) in triacylglycerols. Weaning and the subsequent fasting period were accompanied by a dramatic drop in the plasma concentration and 14:0 content of triacylglycerols and by marked decrease and increase in the weight% of 20:1(n-9) and 20:5(n-3), respectively, in this lipid fraction. Weight% of 14:0 in triacylglycerols and/or plasma concentration of triacylglycerols clearly distinguish post-weaning from suckling. However, fasting versus foraging pups could not be clearly distinguished.
AJP: Regulatory, Integrative and Comparative Physiology, 2007
Adult female elephant seals (Mirounga angustirostris) combine long-term fasting with lactation and molting. Glycerol gluconeogenesis has been hypothesized as potentially meeting all of the glucose requirements of the seals during these fasts. To test this hypothesis, a primed constant infusion of [2-14 C]glycerol was administered to 10 ten adult female elephant seals at 5 and 21-22 days postpartum and to 10 additional adult females immediately after the molt. Glycerol kinetics, rates of lipolysis, and the contribution of glycerol to glucose production were determined for each period. Plasma metabolite levels as well as insulin, glucagon, and cortisol were also measured. Glycerol rate of appearance was not significantly correlated with mass (P ϭ 0.14, r 2 ϭ 0.33) but was significantly related to the percentage of glucose derived from glycerol (P Ͻ 0.01, r 2 ϭ 0.81) during late lactation. The contribution of glycerol to glucose production was Ͻ3% during each fasting period, suggesting a lower contribution to gluconeogenesis than is observed in other long-term fasting mammals. Because of a high rate of endogenous glucose production in fasting elephant seals, it is likely that glycerol gluconeogenesis still makes a substantial contribution to the substrate needs of glucose-dependent tissues. The lack of a relationship between glucoregulatory hormones and glycerol kinetics, glycerol gluconeogenesis, and metabolites supports the proposition that fasting elephant seals do not conform to the traditional insulinglucagon model of substrate metabolism.
Journal of Experimental Biology, 2005
During prolonged fasting physiological mechanisms defend lean tissue from catabolism. In the fasting state, glucose is derived solely from gluconeogenesis, requiring some catabolism of amino acids for gluconeogenic substrates. This creates a conflict in animals undergoing fasts concurrently with metabolically challenging activities. This study investigated glucose metabolism in fasting and developing neonatal elephant seals. Glucose production and glucose cycle activity were measured early (2 weeks) and late (6 weeks) in the postweaning fasting period. Additionally the role of regulatory hormones on glucose production and glucose cycle activity were investigated. Glucose cycle activity was highly variable throughout the study period, did not change over the fasting period, and was not correlated with insulin or glucagon level. Endogenous glucose production (EGP) was 2.80±0.65·mg·kg -1 ·min -1 early and 2.21±0.12 during late fasting. Insulin to glucagon molar ratio decreased while cortisol levels increased over the fast (t=5.27, 2.84; P=0.003, 0.04; respectively). There was no relationship between EGP and hormone levels. The glucose production values measured in this study were high and exceeded the estimated gluconeogenic substrate available. These data suggest extensive glucose recycling via Cori cycle activity occurring in northern elephant seals, and we propose a possible justification for this recycling.
Relationships between plasma ketones and fasting duration in neonatal elephant seals
The American journal of physiology, 1990
Long-duration fasting in mammals can ultimately lead to stage three terminal starvation, which is characterized by depleted fat stores, a metabolic shift away from fat metabolism toward lean tissue catabolism, and a sharp decline in circulating levels of plasma fatty acids and ketone bodies. However, this biochemical shift has never been observed outside of the laboratory in a naturally fasting, nonhibernating mammal. In the current study, plasma levels of the ketone body D-beta-hydroxybutyrate (beta-HBA) were assayed in 10 Northern elephant seal pups during suckling and the postweaning fast and in 12 fasting adult seals. Plasma beta-HBA concentration in the pups was minimal during suckling (0.09 +/- 0.06 mM; n = 10) and began to increase immediately after weaning. The concentration rose until about 55 days into the fast (1.34 +/- 0.36 mM; n = 10) and then declined sharply. Within 10 days of this deflection point, the seal pups left for sea. By contrast, adult elephant seals showed ...
Journal of Endocrinology, 2003
After nursing, pups of the northern elephant seal (Mirounga angustirostris) are approximately 46% body fat and rely almost entirely on the oxidation of their large fat stores to sustain their metabolism for the ensuing 8-12 week postweaning fast, which is a natural component of their life history. Thus, fasting pups provide an ideal opportunity to examine the hormonal alterations associated with prolonged food deprivation in a naturally adapted model. Cortisol, ghrelin, glucagon, growth hormone (GH), insulin-like growth factor-I (IGF-I), insulin, blood urea nitrogen (BUN), glucose and non-esterified fatty acids (NEFA) were examined in 20 male and 20 female pups blood sampled early (,1 week postweaning) and late (6-8 weeks postweaning) during the fast. Mean cortisol, ghrelin, GH, and glucagon increased 1·8-, 1·8-, 1·4-, and 2·3-fold between early and late periods, while mean IGF-I and insulin decreased 97% and 38%, respectively. NEFA increased 2·3-fold, while BUN and glucose decreased 46% and 11%, respectively. NEFA was significantly and positively correlated with cortisol and GH; individually; however, when the relationship was examined as a multiple regression the correlation improved suggesting that cortisol and GH act synergistically to promote lipolysis during the fast. GH and BUN were negatively and significantly correlated between early and late fasting suggesting that GH may promote protein sparing as well. The decrease in glucose may be responsible for stimulating glucagon, resulting in the maintenance of relative hyperglycemia. The increases in cortisol, ghrelin, glucagon, and GH suggest that these hormones may be integral in mediating the metabolism of seal pups during prolonged fasting.
The demands of lactation promote differential regulation of lipid stores in fasting elephant seals
Fasting animals must ration stored reserves appropriately for metabolic demands. Animals that experience fasting concomitant with other metabolically demanding activities are presented with conflicting demands of energy conservation and expenditure. Our objective was to understand how fasting northern elephant seals regulate the mobilization of lipid reserves and subsequently milk lipid content during lac-tation. We sampled 36 females early and 39 at the end of lactation. To determine the separate influences of lactation from fasting, we also sampled fasting but non-lactating females early and late (8 and 6 seals, respectively) in their molting fasting period. Mass and adiposity were measured, as well as circulating non-esterified fatty acid (NEFA), triacylglycerol (TAG), cortisol, insulin and growth hormone levels. Milk was collected from lactating females. Milk lipid content increased from 31% in early to 51% in late lactation. In lactating females plasma NEFA was positively related to cortisol and negatively related to insulin, but in molting seals, only variation in cortisol was related to NEFA. Milk lipid content varied with mass, adiposity, NEFA, TAG, cortisol and insulin. Surprisingly, growth hormone concentration was not related to lipid metabolites or milk lipid. Suppression of insulin release appears to be the differential regulator of lipolysis in lactating versus molting seals, facilitating mobilization of stored lipids and maintenance of high NEFA concentrations for milk synthesis. Milk lipid was strongly impacted by the supply of substrate to the mammary gland, indicating regulation at the level of mobilization of lipid reserves.
Journal of Comparative Physiology B, 2013
Elephant seals maintain rates of endogenous glucose production (EGP) typical of post-absorptive mammals despite enduring prolonged periods of food deprivation concurrent with low rates of glucose oxidation. These high rates of EGP suggest extensive glucose recycling during fasting. We investigated lactate metabolism in fasting elephant seals to assess its role in glucose recycling. Whole-animal glucose and lactate fluxes were measured as the rates of appearance of glucose and lactate (Ra gluc and Ra lac , respectively) using a primed constant infusion of [U-14 C] lactate and [6-3 H] glucose, and we calculated the minimum contribution of lactate to gluconeogenesis (GNG lac ). Ra lac was high compared to resting values in other species (3.21 ± 0.71 mmol min -1 * kg -1 ), did not change between 14 ± 1 and 31 ± 8 days of fasting and varied directly with Ra glu . The minimum GNG lac was 44.6 ± 6.0 % of EGP, varied directly with plasma lactate levels, and did not change over the fast. Ra lac and Ra glu both varied directly with plasma insulin concentrations. These data suggest that lactate is the predominant gluconeogenic precursor in fasting elephant seals and that high rates of glucose recycling through Cori cycle activity contribute to the maintenance of EGP during fasting. High levels of Cori cycle activity and EGP may be important components of metabolic adaptations that maintain glucose production while avoiding ketosis during extended fasting or are related to sustained metabolic alterations associated with extended breath-holds in elephant seals.