A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications (original) (raw)

Multi-joint Actuation Platform for Lower Extremity Soft Exosuits

Lower-limb wearable robots have been proposed as a means to augment or assist the wearer's natural performance, in particular, in the military and medical field. Previous research studies on human-robot interaction and biomechanics have largely been performed with rigid exoskeletons that add significant inertia to the lower extremities and provide constraints to the wearer's natural kinematics in both actuated and non-actuated degrees of freedom. Actuated lightweight soft exosuits minimize these effects and provide a unique opportunity to study human-robot interaction in wearable systems without affecting the subjects underlying natural dynamics. In this paper, we present the design and control of a reconfigurable multi-joint actuation platform that can provide biologically realistic torques to ankle, knee, and hip joints through lower extremity soft exosuits. Two different soft exosuits have been designed to deliver assistive forces through Bowden cable transmission to the ankle and hip joints. Through human subject experiments, it is demonstrated that with a real-time admittance controller, accurate force profile tracking can be achieved during walking. The average energy delivered to the test subject was calculated while walking at 1.25 m/s and actuated with 15% of the total torque required by the biological joints. The results show that the ankle joint received an average of 3.02J during plantar flexion and that the hip joint received 1.67J during flexion each gait cycle. The efficiency of the described suit and controller in transferring energy to the human biological joints is 70% for the ankle and 48% for the hip.

Soft robotic suits: State of the art, core technologies and open challenges

IEEE Transactions on Robotics, 2021

Wearable robots are undergoing a disruptive transition, from the rigid machines that populated the science-fiction world in the early eighties to lightweight robotic apparel, hardly distinguishable from our daily clothes. In less than a decade of development, soft robotic suits have achieved important results in human motor assistance and augmentation. In this paper, we start by giving a definition of soft robotic suits and proposing a taxonomy to classify existing systems. We then critically review the modes of actuation, the physical human-robot interface and the intention-detection strategies of state of the art soft robotic suits, highlighting the advantages and limitations of different approaches. Finally, we discuss the impact of this new technology on human movements, for both augmenting human function and supporting motor impairments, and identify areas that are in need of further development.

Soft wearable assistive robotics: exosuits and supernumerary limbs

Wearable Exoskeleton Systems: Design, control and applications, 2018

The intrinsic soft nature of compliant supernumerary limbs and exosuits makes them appealing candidates for assisting human movements, with potential applications in healthcare, human augmentation and logistics. In the following chapter, we describe the technology used in exosuits and supernumerary limbs for assistance of activities of daily living, with emphasis on aiding grasping and flexion/extension of the elbow joint. We discuss the mechanical design principles of such devices, detail the control paradigms that can be used for intention-detection and present the design and evaluation of cutaneous interfaces used for force feedback rendering. Tests on healthy and impaired subjects highlight that exosuits and supernumerary limbs are potential cost-effective and intrinsically safe solutions for increasing the capabilities of healthy subjects and improving the quality of life of subjects suffering from motor disorders.

Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton

Frontiers in Neurorobotics, 2020

There is a growing international interest in developing soft wearable robotic devices to improve mobility and daily life autonomy as well as for rehabilitation purposes. Usability, comfort and acceptance of such devices will affect their uptakes in mainstream daily life. The XoSoft EU project developed a modular soft lower-limb exoskeleton to assist people with low mobility impairments. This paper presents the bio-inspired design of a soft, modular exoskeleton for lower limb assistance based on pneumatic quasi-passive actuation. The design of a modular reconfigurable prototype and its performance are presented. This actuation centers on an active mechanical element to modulate the assistance generated by a traditional passive component, in this case an elastic belt. This study assesses the feasibility of this type of assistive device by evaluating the energetic outcomes on a healthy subject during a walking task. Human-exoskeleton interaction in relation to task-based biological power assistance and kinematics variations of the gait are evaluated. The resultant assistance, in terms of overall power ratio () between the exoskeleton and the assisted joint, was 26.6% for hip actuation, 9.3% for the knee and 12.6% for the ankle. The released maximum power supplied on each articulation, was 113.6% for the hip, 93.2% for the knee, and 150.8% for the ankle.

Soft Exoskeletons: Development, Requirements, and Challenges of the Last Decade

Actuators

In this article, various investigations on soft exoskeletons are presented and their functional and structural characteristics are analyzed. The present work is oriented to the studies of the last decade and covers the upper and lower joints, specifically the shoulder, elbow, wrist, hand, hip, knee, and ankle. Its functionality, applicability, and main characteristics are exposed, such as degrees of freedom, force, actuators, power transmission methods, control systems, and sensors. The purpose of this work is to show the current trend in the development of soft exoskeletons, in addition to specifying the essential characteristics that must be considered in its design and the challenges that its construction implies.

Design and Validation of a Modular One-To-Many Actuator for a Soft Wearable Exosuit

Front. Neurorobot., 18 June 2019

The size, weight, and power consumption of soft wearable robots rapidly scale with their number of active degrees of freedom. While various underactuation strategies have been proposed, most of them impose hard constrains on the kinetics and kinematics of the device. Here we propose a paradigm to independently control multiple degrees of freedom using a set of modular components, all tapping power from a single motor. Each module consists of three electromagnetic clutches, controlled to convert a constant unidirectional motion in an arbitrary output trajectory. We detail the design and functioning principle of each module and propose an approach to control the velocity and position of its output. The device is characterized in free space and under loading conditions. Finally, we test the performance of the proposed actuation scheme to drive a soft exosuit for the elbow joint, comparing it with the performance obtained using a traditional DC motor and an unpowered-exosuit condition. The exosuit powered by our novel scheme reduces the biological torque required to move by an average of 46.2%, compared to the unpowered condition, but negatively affects movement smoothness. When compared to a DC motor, using the our paradigm slightly deteriorates performance. Despite the technical limitations of the current design, the method proposed in this paper is a promising way to design more portable wearable robots.

Preliminary design and control of a soft exosuit for assisting elbow movements and hand grasping in activities of daily living

Journal of Rehabilitation and Assistive Technologies Engineering

The development of a portable assistive device to aid patients affected by neuromuscular disorders has been the ultimate goal of assistive robots since the late 1960s. Despite significant advances in recent decades, traditional rigid exoskeletons are constrained by limited portability, safety, ergonomics, autonomy and, most of all, cost. In this study, we present the design and control of a soft, textile-based exosuit for assisting elbow flexion/extension and hand open/close. We describe a model-based design, characterisation and testing of two independent actuator modules for the elbow and hand, respectively. Both actuators drive a set of artificial tendons, routed through the exosuit along specific load paths, that apply torques to the human joints by means of anchor points. Key features in our design are under-actuation and the use of electromagnetic clutches to unload the motors during static posture. These two aspects, along with the use of 3D printed components and off-the-she...

Soft Robotics in Body Assistance: An Intelligent Rehabilitation Device with Soft Continuum Actuation

Journal of Student Research, 2021

In an effort to improve rehabilitation devices, the applications of soft robotics technologies to prosthetics and physical therapy was explored, particularly due to the benefits of the inherent properties of soft materials. A conceptual design for a soft robotics device prototype is proposed to assist with physical therapy for wrist tendonitis and arthritis, carpal tunnel syndrome, fractures and sprains, and compromised motor skills due to chronic stroke. The device assists in four motions that are commonly performed in wrist therapy: flexion, extension, and rotation (clockwise and counterclockwise) using soft pneumatic actuators to guide movements. The distinct directions were achieved by varying the lateral and radial strain limiting layers. The device uses embodied intelligence to make the device dynamically adaptable in real time, allowing for a customizable recovery process. A detailed model of the device was developed and the viability of the design was assessed using a suite ...