Control of cellular responses to mechanical cues through YAP/TAZ regulation (original) (raw)
Journal of Biological Chemistry
To perceive their three-dimensional environment, cells and tissues must be able to sense and interpret various physical forces like shear, tensile, and compression stress. These forces can be generated both internally and externally in response to physical properties, like substrate stiffness, cell contractility, and forces generated by adjacent cells. Mechanical cues have important roles in cell fate decisions regarding proliferation, survival, and differentiation as well as the processes of tissue regeneration and wound repair. Aberrant remodeling of the extracellular space and/or defects in properly responding to mechanical cues likely contributes to various disease states, such as fibrosis, muscle diseases, and cancer. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical signals, like activation of specific genes and signaling cascades that enable cells to adapt to their physical environment. The signaling pathways involved in mechanical...
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact