State of the Art, Taxonomy, and Open Issues on Cognitive Radio Networks with NOMA (original) (raw)

An optimized power allocation algorithm for cognitive radio NOMA communication

TELKOMNIKA, 2021

The primary objective of cognitive radio network is to effectively utilize the unused spectrum bands. In cognitive radio networks, spectrum sharing between primary and secondary users is accomplished using either underlay or interweave cognitive radio approach. Non orthogonal multiple access (NOMA) is the proven technology in the present wireless developments, which allows the coexistence of multiple users in the same orthogonal block. The new paradigm cognitive radio NOMA (CR-NOMA) is one of the potential solutions to fulfill the demands of future wireless communication. This paper emphasizes on practical implementation of NOMA in cognitive radio networks to enhance the spectral efficiency. The goal is to increase the throughput of the secondary users satisfying the quality of service (QOS) requirements of primary users. To achieve this, we have presented the optimized power allocation strategy for underlay downlink scenario to support the simultaneous transmission of primary and secondary users. Furthermore, we have proposed QOS based power allocation scheme for CR-NOMA interweave model to support the coexistence of multiple secondary networks. Also, the changes adopted in implementing superposition coding (SC) and successive interference cancellation (SIC) for CR-NOMA are highlighted. Finally, simulation results validate the mathematical expressions that are derived for power allocation coefficient and outage probability.

Resource Allocation for Throughput Maximization in Cognitive Radio Network with NOMA

Computers, Materials & Continua, 2022

Spectrum resources are the precious and limited natural resources. In order to improve the utilization of spectrum resources and maximize the network throughput, this paper studies the resource allocation of the downlink cognitive radio network with non-orthogonal multiple access (CRN-NOMA). NOMA, as the key technology of the fifth-generation communication (5G), can effectively increase the capacity of 5G networks. The optimization problem proposed in this paper aims to maximize the number of secondary users (SUs) accessing the system and the total throughput in the CRN-NOMA. Under the constraints of total power, minimum rate, interference and SINR, CRN-NOMA throughput is maximized by allocating optimal transmission power. First, for the situation of multiple sub-users, an adaptive optimization method is proposed to reduce the complexity of the optimization solution. Secondly, for the optimization problem of nonlinear programming, a maximization throughput optimization algorithm based on Chebyshev and convex (MTCC) for CRN-NOMA is proposed, which converts multi-objective optimization problem into single-objective optimization problem to solve. At the same time, the convergence and time complexity of the algorithm are verified. Theoretical analysis and simulation results show that the algorithm can effectively improve the system throughput. In terms of interference and throughput, the performance of the sub-optimal solution is better than that of orthogonal-frequency-division-multiple-access (OFDMA). This paper provides important insights for the research and application of NOMA in future communications.

Non-orthogonal Multiple Access in Large-Scale Underlay Cognitive Radio Networks

In this paper, non-orthogonal multiple access (NOMA) is applied to large-scale underlay cognitive radio (CR) networks with randomly deployed users. In order to characterize the performance of the considered network, new closed-form expressions of the outage probability are derived using stochastic-geometry. More importantly, by carrying out the diversity analysis, new insights are obtained under the two scenarios with different power constraints: 1) fixed transmit power of the primary transmitters (PTs), and 2) transmit power of the PTs being proportional to that of the secondary base station. For the first scenario, a diversity order of m is experienced at the m-th ordered NOMA user. For the second scenario, there is an asymptotic error floor for the outage probability. Simulation results are provided to verify the accuracy of the derived results. A pivotal conclusion is reached that by carefully designing target data rates and power allocation coefficients of users, NOMA can outperform conventional orthogonal multiple access in underlay CR networks.

Cooperative underlay cognitive radio assisted NOMA: secondary network improvement and outage performance

TELKOMNIKA Telecommunication Computing Electronics and Control, 2019

In this paper, a downlink scenario of a non-orthogonal multiple access (NOMA) scheme with power constraint via spectrum sensing is considered. Such network provides improved outage performance and new scheme of NOMA-based cognitive radio (CR-NOMA) network are introduced. The different power allocation factors are examined subject to performance gap among these secondary NOMA users. To evaluate system performance, the exact outage probability expressions of secondary users are derived. Finally, the dissimilar performance problem in term of secondary users is illustrated via simulation, in which a power allocation scheme and the threshold rates are considered as main impacts of varying system performance. The simulation results show that the performance of CR-NOMA network can be improved significantly.

Throughput enhancement of cognitive M2M networks based on NOMA for 5G communication systems

International Journal of Communication Systems, 2020

One of the promising technologies for 5G cellular networks is machine-tomachine (M2M) communications. We propose a cognitive radio network (CR) that includes a primary cellular system and a secondary cognitive system. The primary cellular system has a primary client (PC) and the secondary cognitive system has M2M clients which are called secondary clients (SCs). In a conventional system of CR network based on orthogonal frequency division multiple access (CR-OFDMA), when the primary client (PC) is absent, only one SC can obtain the idle spectrum. But, the SC must leave the spectrum when detecting the existence of the PC. So, the spectrum usage of this system is very low. This paper proposes a cooperative CR network based on nonorthogonal multiple access (CCR-NOMA) for spectrum sensing using energy detection (ED) to allow multiple SCs to share the same frequency at the same time, but are differentiated according to the power domain or code domain, to improve spectrum efficiency of 5G communications and the transmission performance of CR network at the absence and presence of the PC. To evaluate the channel sensing performance of the ED technique in CCR-NOMA, we derived a closed-form expression between the achievable throughput and sensing time for the CCR-NOMA system. The same analysis for the case of CR-OFDMA is reproduced for the sake of comparison. The analysis showed that the CR-NOMA system for M2M communication outperforms the CR-OFDMA system for M2M communication for the same noncooperative and cooperative spectrum sensing and physical layer parameters.

Non-Orthogonal Multiple Access (NOMA) as a Potential Candidate for Future Radio Access Technologies

RESTECH 2016 (Research, Education, Science and Technology Colloqium 2016), Jabatan Kejuruteraan Awam, Politeknik Merlimau, Melaka, 2016

This article presents a review of the Non-orthogonal multiple access (NOMA) as a promising candidate multiple access technology for the preparation development of Internet of things (IoT) and the 5th generation (5G) wireless communications. The Non-orthogonal multiple access or NOMA utilizing the power domain and advanced receiver to address the challenges in 5G technologies such as higher spectral efficiency, massive connectivity, and lower latency in radio access technologies. The key components technologies of NOMA are presented and discussed to compare between other candidates and enclose the benefit of NOMA including the basic principles of NOMA techniques.

Multiple Access in Cognitive Radio Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

IEEE Access, 2021

Due to the increasingly complicated communication scenarios and network architectures as well as growing traffic demands for high speed connectivity, dynamic spectrum allocation in fifth generation (5G) networks becomes insufficient to guarantee the satisfaction of main network requirements in terms of spectrum efficiency (SE), scalability, delay, and energy efficiency (EE). Enormous multiple access schemes and cognitive radio (CR) network scenarios come to fulfill these requirements and enhance network functionalities. With multiple access schemes, users are able to transmit their data streams simultaneously under maximum capacity constraints. On the other hand, vacant spectrum holes are exploited in an opportunistic manner via CR and software defined radio. In order to exploit these spectrum holes as well as meeting different network requirements, several multiple access techniques have been presented that have been initiated through the adoption of orthogonal multiple access (OMA) scheme. Additionally, non-orthogonal multiple access (NOMA) and space division multiple access (SDMA) are presented to achieve a promising multiplexing gain as well as to address the inefficient spectrum utilization incurred with OMA schemes. However, such multiplexing gain is limited as it depend on the channel conditions. Accordingly, a generalized multiple access scheme has been presented recently, namely rate splitting multiple access (RSMA), to further enhance the SE. In this paper, we provide a comprehensive study regarding the key multiple access schemes presented for CRNs to further enhance the use of spectral resources, and additionally highlights the key implementation challenges and the enabling techniques addressed to overcome it. We have given a special attention to the enhances provided by RSMA as compared with OMA, SDMA, and NOMA techniques. Finally, some open issues are spotted to shed lights on the need for further studies and future research efforts. INDEX TERMS Multiple access, SDMA, NOMA, RSMA, cognitive radio (CR), 5G. electronics and communication engineering from Zagazig University, Zagazig, Egypt, in 2014, where she is currently pursuing the M.Sc. degree. Her current research interests include wireless communication systems, cognitive radio networks, NOMA, optimizations, and 5G mobile communication. MOHAMED RIHAN (Senior Member, IEEE) received the B.Sc. degree (Hons.

Cooperative Non-Orthogonal Multiple Access for Future Wireless Communications

EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 2018

There is a huge demand for increased connectivity and reliability of devices in the fifth generation and beyond of wireless communications so as to ensure massive connectivity and high spectral efficiency. Recently, powerdomain non-orthogonal multiple access (NOMA) has received considerable attention as a promising multiple access scheme to improve spectrum efficiency. It allows multiple users to share both time and frequency resources by adjusting the power allocation ratio. However, with ever-increasing mobile users and machines in future wireless environments, NOMA still suffers from some challenges such as a limited connectivity, channel uncertainty and a trade-off between throughput and user fairness. Therefore, an opportunity exists for developing NOMA features in a cooperation of such devices. In this paper, we focuses on exploring cooperative power-domain NOMA systems to maximize potential and develops an effective multiple access for next generation wireless systems. To explore the trade-off of the cooperative NOMA system between its performance and the network complexity, several NOMA systems along with various techniques are introduced. Firstly, a joint NOMA and partial relay selection is introduced to improve both system throughput and user fairness. Secondly, a cooperative NOMA scheme which uses a cognitive radio network as an underlay is also introduced. In this work, a cooperative scheme is used to enhance the outage performance at a cell-edge user for user fairness and NOMA aims to improve spectral efficiency. Finally, an opportunistic NOMA under unreliable wireless backhauls and fronthaul channel uncertainty is introduced and two opportunistic selection rules are applied to a joint NOMA scheme and cooperated transmission. In this work, the impact of unreliable wireless backhauls and fronthaul channel uncertainty on the coordinated NOMA system is examined.

Performance Analysis of Underlay Cognitive Radio Nonorthogonal Multiple Access Networks

IEEE Transactions on Vehicular Technology, 2019

This paper considers a dual-hop underlay cognitive radio non-orthogonal multiple access (NOMA) network. The endto-end outage probability (OP) is evaluated as the performance metric for secondary NOMA users. Furthermore, the OP results of NOMA is compared with conventional orthogonal multiple access to show the supremacy of the former. Representative numerical and simulation results corroborate the effectiveness of the proposed scheme and presented analysis. Index Terms-Amplify-and-forward (AF), cognitive radio (CR), non-orthogonal multiple access (NOMA), outage probability (OP).

Non-Orthogonal Multiple Access (NOMA) for Future Radio Access

—This paper presents a non-orthogonal multiple access (NOMA) concept for future radio access (FRA) towards the 2020s information society. Different from the current LTE radio access scheme (until Release 11), NOMA superposes multiple users in the power domain although its basic signal waveform could be based on the orthogonal frequency division multiple access (OFDMA) or the discrete Fourier transform (DFT)-spread OFDM the same as LTE baseline. In our concept, NOMA adopts a successive interference cancellation (SIC) receiver as the baseline receiver scheme for robust multiple access, considering the expected evolution of device processing capabilities in the future. Based on system-level evaluations, we show that the downlink NOMA with SIC improves both the capacity and cell-edge user throughput performance irrespective of the availability of the frequency-selective channel quality indicator (CQI) on the base station side. Furthermore, we discuss possible extensions of NOMA by jointly applying multi-antenna/site technologies with a proposed NOMA/MIMO scheme using SIC and an interference rejection combining (IRC) receiver to achieve further capacity gains, e.g., a threefold gain in the spectrum efficiency representing a challenging target for FRA.