Design and Implementation of Ultra-Wide Band Antenna for Partial Discharge Detection in High Voltage Power Equipment (original) (raw)

Abstract

Partial discharges (PD) are the most common and harmful threat to the health of electrical insulation of high voltage (HV) and high field (HF) equipment. The occurrence of PD activity in HV and MV equipment is at the same time a cause and a sign of insulation degradation that may eventually result in the breakdown of the HV power equipment. For the safe and reliable operation of HV power equipment, continuous PD monitoring needs to be conducted conveniently to prevent any unplanned power outages and damage to electrical power equipment. The ultra-high frequency (UHF) PD measurement method has been widely used as an effective technique to detect PD activity on HV power equipment due to its noninvasive principle. To enable PD detection accuracy, there is still a need for more sensitive PD sensors that can assist the UHF PD monitoring system by suppressing ambient background noise and low-frequency electromagnetic interferences from telecommunication such as GSM signals. To tackle the sensitivity issues, this article presents a new design of ultra-wideband (UWB) microstrip patch antenna that is capable of effective suppression of low-frequency interference signals. The proposed antenna, designed, simulated, and optimized using the CST Microwave Studio software, has a bandwidth of 3.3GHz, below-10dB, in the operating frequency range of 1.2GHz-4.5GHz. The prototype of this antenna, printed on an FR4 substrate of a thickness of 1.6mm and a dielectric constant of 4.4, featuring a compact size of 100mm × 100mm × 1.6mm, was implemented to detect PD through laboratory experiments. This paper shows that the designed UWB antenna has high sensitivity, good noise rejection and it is, therefore, a promising candidate sensor for PD detection on HV equipment.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (37)

  1. J. P. Uwiringiyimana and U. Khayam, ''Measurement of partial discharge in air insulation by using UHF double layer bowtie antenna with modified wings edges,'' in Proc. Int. Conf. Electr. Eng. Informat. (ICEEI), Jul. 2019, pp. 228-233.
  2. J. P. Uwiringiyimana and U. Khayam, ''Design and application of double layer bowtie antenna and single layer bowtie antenna as UHF sensors for partial discharge detection,'' IOP Conf. Ser., Mater. Sci. Eng., vol. 850, no. 1, May 2020, Art. no. 012036.
  3. S. Suwarno, ''Partial discharge in high voltage insulating materials,'' Int. J. Electr. Eng. Informat., vol. 8, no. 1, pp. 147-163, Mar. 2016.
  4. U. Khayam and F. I. Fatoni, ''Design and application of loop antenna for partial discharge induced electromagnetic wave detection,'' in 6th Int. Conf. Electr. Eng. Informat. (ICEEI), Nov. pp. 1-6.
  5. F. Rozi and U. Khayam, ''Development of loop antennas for partial dis- charge detection,'' Int. J. Electr. Eng. Informat., vol. 7, no. 1, pp. 29-41, Mar. 2015.
  6. D.-S. Kim, C.-M. Hwang, Y.-N. Kim, J.-O. Choi, W.-B. Seo, B.-S. Han, S.-H. Choi, and Y.-M. Jang, ''Development of an intelligent spacer built into the internal-type UHF partial discharge sensor,'' in Proc. Conf. Rec. IEEE Int. Symp. Electr. Insul., Jun. 2008, pp. 396-399.
  7. M. D. Judd, ''Experience with UHF partial discharge detection and location in power transformers,'' in Proc. Electr. Insul. Conf. (EIC), Jun. 2011, pp. 201-205.
  8. S.-G. Ha, J. Cho, J. Lee, B.-W. Min, J. Choi, and K.-Y. Jung, ''Numerical study of estimating the arrival time of UHF signals for partial discharge localization in a power transformer,'' J. Electromagn. Eng. Sci., vol. 18, no. 2, pp. 94-100, Apr. 2018.
  9. L. Luo, B. Han, J. Chen, G. Sheng, and X. Jiang, ''Partial discharge detec- tion and recognition in random matrix theory paradigm,'' IEEE Access, vol. 5, pp. 8205-8213, 2016.
  10. B. Sheng, C. Zhou, D. M. Hepburn, X. Dong, G. Peers, W. Zhou, and Z. Tang, ''Partial discharge pulse propagation in power cable and partial discharge monitoring system,'' IEEE Trans. Dielectr. Electr. Insul., vol. 21, no. 3, pp. 948-956, Jun. 2014.
  11. P. Li, W. Zhou, S. Yang, Y. Liu, Y. Tian, and Y. Wang, ''Method for partial discharge localisation in air-insulated substations,'' IET Sci., Meas. Technol., vol. 11, no. 3, pp. 331-338, Jan. 2017.
  12. J. Lopez-Roldan, T. Tang, and M. Gaskin, ''Optimisation of a sen- sor for onsite detection of partial discharges in power transformers by the UHF method,'' IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 6, pp. 1634-1639, Dec. 2008.
  13. M. Siegel, M. Beltle, S. Tenbohlen, and S. Coenen, ''Application of UHF sensors for PD measurement at power transformers,'' IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 1, pp. 331-339, Feb. 2017.
  14. T. Li, M. Rong, C. Zheng, and X. Wang, ''Development simulation and experiment study on UHF partial discharge sensor in GIS,'' IEEE Trans. Dielectr. Electr. Insul., vol. 19, no. 4, pp. 1421-1430, Aug. 2012.
  15. R. Bell, C. Charlson, S. P. Halliday, T. Irwin, J. Lopez-Roldan, and J. Nixon, ''High-voltage onsite commissioning tests for gas-insulated sub- stations using UHF partial discharge detection,'' IEEE Trans. Power Del., vol. 18, no. 4, pp. 1187-1191, Oct. 2003.
  16. A. A. Zahed, A. H. El-Hag, N. Qaddoumi, R. Hussein, and K. B. Shaban, ''Comparison of different fourth order Hilbert fractal antennas for partial discharge measurement,'' IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 1, pp. 175-182, Feb. 2017.
  17. Y. Wang, Z. Wang, and J. Li, ''UHF Moore fractal antennas for online GIS PD detection,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 852-855, 2016.
  18. J. Ardila-Rey, J. Martínez-Tarifa, G. Robles, and M. V. Rojas-Moreno, ''Partial discharge and noise separation by means of spectral-power clus- tering techniques,'' IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 4, pp. 1436-1443, Aug. 2013.
  19. G. V. R. Xavier, A. J. R. Serres, E. G. da Costa, and C. C. R. de Albuquerque, ''Circular printed monopole antenna with slotted ground plane for application in the detection of partial discharges in power transformers,'' in Proc. 4th Int. Symp. Instrum. Syst., Circuits Transducers (INSCIT), Aug. 2019, pp. 1-5.
  20. G. V. R. Xavier, E. G. Da Costa, A. J. R. Serres, H. F. S. Sousa, A. C. D. Oliveira, and L. A. M. M. Nobrega, ''Design and application of an UHF microstrip circular antenna for partial discharges detection in power transformers,'' in Proc. ICHVE IEEE Int. Conf. High Volt. Eng. Appl., Sep. 2019, pp. 2-5.
  21. H. Chai, B. T. Phung, and D. Zhang, ''Development of UHF sensors for partial discharge detection in power transformer,'' in Proc. Condition Monitor. Diagnosis (CMD), Sep. 2018, pp. 1-5.
  22. P. P. Chandran and S. Viswasom, ''Gain and bandwidth optimization of a novel microstrip patch antenna,'' in Proc. 4th Int. Conf. Adv. Comput. Commun., Aug. 2014, pp. 315-318.
  23. J.-S. Kuo and G.-B. Hsieh, ''Gain enhancement of a circularly polarized equilateral-triangular microstrip antenna with a slotted ground plane,'' IEEE Trans. Antennas Propag., vol. 51, no. 7, pp. 1652-1656, Jul. 2003.
  24. Y. Rahayu, T. A. Rahman, R. Ngah, and P. S. Hall, ''Slotted ultra wideband antenna for bandwidth enhancement,'' in Proc. Loughborough Antennas Propag. Conf., Mar. 2008, pp. 449-452.
  25. C. A. Balanis, ''Antenna theory: Analysis and design,'' Tech. Rep., 2012.
  26. H. H. Sinaga, B. T. Phung, and T. R. Blackburn, ''Partial discharge localiza- tion in transformers using UHF detection method,'' IEEE Trans. Dielectr. Electr. Insul., vol. 19, no. 6, pp. 1891-1900, Dec. 2012.
  27. S. J. Mumby and J. Yuan, ''Dielectric properties of FR-4 laminates as a function of thickness and the electrical frequency of the measurement,'' J. Electron. Mater., vol. 18, no. 2, pp. 287-292, Mar. 1989.
  28. Y. Qi, Y. Fan, G. Bing, R. Jia, W. Sen, S. Wei, and A. Jadoon, ''Design of ultra-wide band metal-mountable antenna for UHF partial discharge detection,'' IEEE Access, vol. 7, pp. 60163-60170, 2019.
  29. S. Park and K. Y. Jung, ''Design of a circularly-polarized uhf antenna for partial discharge detection,'' IEEE Access, vol. 8, pp. 81644-81650, 2020.
  30. A. A. Qureshi, M. U. Afzal, T. Taqueer, and M. A. Tarar, ''Performance analysis of FR-4 substrate for high frequency microstrip antennas,'' in Proc. China-Japan Jt. Microw. Conf. (CJMW), Jul. 2017, pp. 159-162.
  31. A. Munir, G. Petrus, and H. Nusantara, ''Multiple slots technique for bandwidth enhancement of microstrip rectangular patch antenna,'' in Proc. Int. Conf. QiR, Jun. 2013, pp. 150-154.
  32. S. M. Mukhtar, M. Isa, and A. A. Al-Hadi, ''Design of UHF antenna sensor for partial discharge detection in high voltage S ubstation,'' IOP Conf. Ser. Mater. Sci. Eng., vol. 318, no. 1, 2018, Art. no. 012052.
  33. Z. Cui, S. Park, H. Choo, and K.-Y. Jung, ''Wideband UHF antenna for partial discharge detection,'' Appl. Sci., vol. 10, no. 5, p. 1698, Mar. 2020.
  34. L. A. M. M. Nobrega, G. V. R. Xavier, M. V. D. Aquino, A. J. R. Serres, C. C. R. Albuquerque, and E. G. Costa, ''Design and development of a bio- inspired UHF sensor for partial discharge detection in power transform- ers,'' Sensors, vol. 19, no. 3, pp. 1-16, 2019.
  35. C. Ma, H. Li, W. Zhou, J. Yu, L. Wang, S. Yang, and S. Hu, ''Background noise of partial discharge detection and its suppression in complex electro- magnetic environment,'' in Proc. IEEE Int. Conf. High Voltage Eng. Appl. (ICHVE), Sep. 2018, pp. 1-4.
  36. J. P. Uwiringiyimana and U. Khayam, ''Noise measurement in high voltage laboratory by using high frequency current transformer and loop antenna,'' in Proc. Int. Conf. High Voltage Eng. Power Syst. (ICHVEPS), Oct. 2017, pp. 35-39.
  37. H. Zhang, T. R. Blackburn, B. T. Phung, and D. Sen, ''A novel wavelet transform technique for on-line partial discharge measurements. 2. on-site noise rejection application,'' IEEE Trans. Dielectr. Electr. Insul., vol. 14, no. 1, pp. 15-22, Feb. 2007.