Dog Coat Colour Genetics: A Review (original) (raw)
Related papers
PLOS ONE, 2021
In mammals, the pigment molecule pheomelanin confers red and yellow color to hair, and the intensity of this coloration is caused by variation in the amount of pheomelanin. Domestic dogs exhibit a wide range of pheomelanin intensity, ranging from the white coat of the Samoyed to the deep red coat of the Irish Setter. While several genetic variants have been associated with specific coat intensity phenotypes in certain dog breeds, they do not explain the majority of phenotypic variation across breeds. In order to gain further insight into the extent of multigenicity and epistatic interactions underlying coat pheomelanin intensity in dogs, we leveraged a large dataset obtained via a direct-to-consumer canine genetic testing service. This consisted of genome-wide single nucleotide polymorphism (SNP) genotype data and owner-provided photos for 3,057 pheomelanic mixed breed and purebred dogs from 63 breeds and varieties spanning the full range of canine coat pheomelanin intensity. We fir...
Coat variation in the domestic dog is governed by variants in three genes
Science (New York, N.Y.), 2009
Coat color and type are essential characteristics of domestic dog breeds. Although the genetic basis of coat color has been well characterized, relatively little is known about the genes influencing coat growth pattern, length, and curl. We performed genome-wide association studies of more than 1000 dogs from 80 domestic breeds to identify genes associated with canine fur phenotypes. Taking advantage of both inter- and intrabreed variability, we identified distinct mutations in three genes, RSPO2, FGF5, and KRT71 (encoding R-spondin-2, fibroblast growth factor-5, and keratin-71, respectively), that together account for most coat phenotypes in purebred dogs in the United States. Thus, an array of varied and seemingly complex phenotypes can be reduced to the combinatorial effects of only a few genes.
Veterinary Dermatology, 2012
Background-The melanocortin 1 receptor (MC1R) gene plays a key role in determining coat colour in mammals by controlling the proportion of eumelanin and pheomelanin granules. Wild raccoon dogs have a mixed coat colour, with black to brown and grey hairs. Hypothesis ⁄ Objectives-The study was performed to identify the cause of the variant yellow coat colour in a wild raccoon dog. Animals-A wild raccoon dog that showed coat colour change to yellow and four wild-type raccoon dogs that showed normal coat colour were included. Methods-To identify the cause of the variant yellow coat colour, we examined the sequence of the MC1R gene and its expression at the mRNA and protein levels. Results-The coding region of the MC1R gene of this raccoon dog comprised 954 bp, the same as for wild-type raccoon dogs and domestic dogs. By comparing the gene with that in the wild-type raccoon dog, a 2 bp deletion was detected in the 5¢-untranslated region, positioned 152 bp upstream of the start codon. However, there was no significant difference in the mRNA expression level. The yellow raccoon dog revealed a significantly decreased MC1R protein level compared with the wild-type raccoon dogs, indicating an increase in pheomelanin synthesis. Conclusions and clinical importance-These results suggest that the variant coat colour in the yellow raccoon dog was associated with decreased MC1R function.
Animal, 2010
Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep:AgoutiandExtensioncoding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. TheAgoutilocus is affected by a large duplication including theASIPgene that may determine theAgoutiwhite and tan allele (AWt). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D5; and a deletion of 9 bp, D9) and in exon 4 (g.5172T>A, p.C126S) of theASIPgene. Three missense mutations in the sheepMC1Rgene cause the dominant blackEDallele (p.M73K and p.D121N) and the putative recessiveeallele (p.R67C). Here, we analysed theseASIPand...
Genes, 2019
White coat color in mammals has been selected several times during the domestication process. Numerous dog breeds are fixed for one form of white coat color that involves darkly pigmented skin. The genetic basis of this color, due to the absence of pigment in the hairs, was suggested to correspond to extreme dilution of the phaeomelanin, by both the expression of only phaeomelanin (locus E) and its extreme dilution (locus I). To go further, we performed genome-wide association studies (GWAS) using a multiple breed approach. The first GWAS, using 34 white dogs and 128 non-white dogs, including White Shepherds, Poodles, Cotons de Tulear and Bichons allowed us to identify two significantly associated loci on the locus E and a novel locus on chromosome 20. A second GWAS using 15 other breeds presenting extreme phaeomelanin dilution confirmed the position of locus I on the chromosome 20 (position 55 Mb pcorrected = 6 × 10−13). Using whole-genome sequencing, we identified a missense varia...
Pigment Cell Research, 2001
Melanocytes produce two chemically distinct types of melanin pigments, eumelanin and pheomelanin. These pigments can be quantitatively analyzed by acidic permanganate oxidation or reductive hydrolysis with hydriodic acid to form pyrrole-2,3,5-tricarboxylic acid or aminohydroxyphenylalanine, respectively. About 30 coat color genes in mice have been cloned, and functions of many of those genes have been elucidated. However, little is known about the interacting functions of these loci. In this study, we used congenic mice to eliminate genetic variability, and analyzed eumelanin and pheomelanin contents of hairs from mice mutant at one or more of the major pigment loci, i.e., the albino (C) locus that encodes tyrosinase, the slaty (Slt) locus that encodes tyrosinase-related protein 2 (TRP2 also known as dopachrome tautomerase, DCT), the brown (B) locus that encodes TRP1, the silver (Si) locus that encodes a melanosomal silver protein, the agouti (A) locus that encodes agouti signaling protein (ASP), the extension (E) locus that encodes melanocortin-1 receptor, and the mahogany (Mg) locus that encodes attractin. We also measured total melanin contents after solubilization of hairs in hot Soluene-350 plus water. Hairs were shaved from 2-3-month-old congenic C57BL/6J mice. The chinchilla (c(ch)) allele is known to encode tyrosinase, whose activity is about one third that of wild type (C). Phenotypes of chinchilla (c(ch)/c(ch)) mice that are wild type or mutant at the brown and/or slaty, loci indicate that functioning TRP2 and TRP1 are necessary, in addition to high levels of tyrosinase, for a full production of eumelanin. The chinchilla allele was found to reduce the amount of pheomelanin in lethal yellow and recessive yellow mice to less than one fifth of that in congenic yellow mice that were wild type at the albino locus. This indicates that reduction in tyrosinase activity affects pheomelanogenesis more profoundly compared with eumelanogenesis. Hairs homozygous for mutation at the slaty locus contain 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-poor melanin, and this chemical phenotype was retained in hairs that were mutant at both the brown locus and the slaty locus. Hair from mice mutant at the brown locus, but not at the slaty locus, do not contain DHICA-poor melanin. This indicates that the proportion of DHICA in eumelanin is determined by TRP2, but not by TRP1. Mutation at the slaty locus (Slt(lt)) was found to have no effect on pheomelanogenesis, supporting a role of TRP2 only in eumelanogenesis. The mutation at silver (si) locus showed an effect similar to brown, a partial suppression of eumelanogenesis. The mutation at mahogany (mg) locus partially suppressed the effect of lethal yellow (Ay) on pheomelanogenesis, supporting a role of mahogany in interfering with agouti signaling. These results show that combination of double mutation study of congenic mice with chemical analysis of melanins is useful in evaluating the interaction of pigment gene functions.
Genetics and Evolution of Mammalian Coat Pigmentation
Annual Review of Animal Biosciences, 2021
The diversity of mammalian coat colors, and their potential adaptive significance, have long fascinated scientists as well as the general public. The recent decades have seen substantial improvement in our understanding of their genetic bases and evolutionary relevance, revealing novel insights into the complex interplay of forces that influence these phenotypes. At the same time, many aspects remain poorly known, hampering a comprehensive understanding of these phenomena. Here we review the current state of this field and indicate topics that should be the focus of additional research. We devote particular attention to two aspects of mammalian pigmentation, melanism and pattern formation, highlighting recent advances and outstanding challenges, and proposing novel syntheses of available information. For both specific areas, and for pigmentation in general, we attempt to lay out recommendations for establishing novel model systems and integrated research programs that target the gen...
The Journal of heredity, 2016
Different pigmentation genes have been associated with color diversity in domestic animal species. The melanocortin 1 receptor (MC1R), agouti signaling protein (ASIP), tyrosinase related protein-1 (TYRP1) and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) genes are candidate genes responsible for variation in wool color among breeds of sheep. Although the influence of these genes has been described in some breeds, in many others the effect of interactions among genes underlying wool color has not been investigated. The Brazilian Creole sheep is a local breed with a wide variety of wool color, ranging from black to white with several intermediate hues. We analyzed in this study the influence of the genes MC1R, ASIP, TYRP1 and KIT on the control of wool color in this breed. A total of 410 samples were analyzed, including 148 white and 262 colored individuals. The MC1R and ASIP polymorphisms were significantly associated with the segregation of either white or colo...
BMC Genetics, 2009
Background: Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. Results: The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F 1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. Conclusion: According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.
The Effect of a Coat Colour-Associated Genes Polymorphism on Animal Health – A Review
Abstract In recent years, the knowledge regarding molecular mechanisms of skin, hair and eye colouration in vertebrates has significantly broadened. It was found that some of the identified coat colour genes show negative pleiotropic effect. They are associated with hereditary diseases, often of a lethal character. Most of these diseases have their counterparts in humans. There is no effective treatment for these diseases, therefore animal models can help to identify the genetic background of diseases and to develop appropriate treatment. Much less is known on the association of coat colour with animal performance. However, there are reports on the effect of coat colour on body measurements and milk production in subtropical environments. The knowledge on pleiotropic effects of coat colour genes is important for breeders who should be aware of the consequences of their decision on mating animals with given genotype.