Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre (original) (raw)

2021, JCAP

We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be su cient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale di↵use emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.

Pre-construction estimates of the Cherenkov Telescope Array sensitivity to a dark matter signal from the Galactic centre

Journal of Cosmology and Astroparticle Physics, 2020

We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale di...

Testing dark matter with Cherenkov light — prospects of H.E.S.S. and CTA for exploring minimal supersymmetry

Journal of High Energy Physics

We provide an updated and improved study of the prospects of the H.E.S.S. and Cherenkov Telescope Array (CTA) experiments in testing neutralino dark matter in the Minimal Supersymmetric Standard Model with nine free parameters (p9MSSM). We include all relevant experimental constraints and theoretical developments, in particular a calculation of the Sommerfeld enhancement for both present-day annihilations and the relic abundance. We perform a state-of-the-art analysis of the CTA sensitivity with a log- likelihood test ratio statistics and apply it to a numerical scan of the p9MSSM parameter space focusing on a TeV scale dark matter. We find that, assuming Einasto profile of dark matter halo in the Milky Way, H.E.S.S. has already been able to nearly reach the so-called thermal WIMP value, while CTA will go below it by providing a further improvement of at least an order of magnitude. Both H.E.S.S. and CTA are sensitive to several cases for which direct detection cross section will be...

On the Relevance of Sharp Gamma-Ray Features for Indirect Dark Matter Searches

Gamma rays from the annihilation of dark matter particles in the Galactic halo provide a particularly promising means of indirectly detecting dark matter. Here, we demonstrate that pronounced spectral features at energies near the dark matter particles' mass, which are a generic prediction for most models, can significantly improve the sensitivity of gamma-ray telescopes to dark matter signals. We derive projected limits on such features (including the traditionally looked-for line signals) and show that they can be much more efficient in constraining the nature of dark matter than the model-independent broad spectral features expected at lower energies.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.