Fairness Perceptions of Algorithmic Decision-Making: A Systematic Review of the Empirical Literature (original) (raw)
Uploaded (2022) | Journal: ArXiv
Abstract
Algorithmic decision-making (ADM) increasingly shapes people’s daily lives. Given that such autonomous systems can cause severe harm to individuals and social groups, fairness concerns have arisen. A human-centric approach demanded by scholars and policymakers requires taking people’s fairness perceptions into account when designing and implementing ADM. We provide a comprehensive, systematic literature review synthesizing the existing empirical insights on perceptions of algorithmic fairness from 39 empirical studies spanning multiple domains and scientific disciplines. Through thorough coding, we systemize the current empirical literature along four dimensions: (1) algorithmic predictors, (2) human predictors, (3) comparative effects (human decision-making vs. algorithmic decision-making), and (4) consequences of ADM. While we identify much heterogeneity around the theoretical concepts and empirical measurements of algorithmic fairness, the insights come almost exclusively from We...
FAQs
AI
What are the main dimensions of perceived algorithmic fairness identified in literature?add
The review identifies four dimensions: algorithmic predictors, human predictors, comparative effects, and consequences of ADM.
How does political ideology affect perceptions of algorithmic fairness?add
Research indicates that political ideology influences fairness perceptions, with conservatives viewing sensitivity features as fairer than liberals.
What methodological approach was used to conduct the systematic literature review?add
The methodology followed includes seven steps, involving predefined criteria, a robust literature search, and rigorous screening processes.
What are the practical implications of perceived fairness in algorithmic decision-making?add
Perceived algorithmic unfairness can negatively impact institutional reputation and trust, influencing user engagement and compliance.
How do algorithmic predictors influence user perceptions of fairness?add
Algorithmic design features such as input reliability, relevance, and potential outcomes significantly shape users' fairness perceptions.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (94)
- Acikgoz, Y., Davison, K. H., Compagnone, M., & Laske, M. (2020). Justice perceptions of artificial intelligence in selection. International Journal of Selection and Assessment, 28(4), 399-416. https://doi.org/10.1111/ijsa.12306
- Araujo, T., Helberger, N., Kruikemeier, S., & de Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & Society, 35(611-732). https://doi.org/10.1007/s00146-019-00931-w Artificial Intelligence High-Level Expert Group. (2019). Ethics guidelines for trustworthy AI. https://ec.europa.eu/futurium/en/ai-alliance-consultation
- Bansak, K., Ferwerda, J., Hainmueller, J., Dillon, A., Hangartner, D., Lawrence, D., & Weinstein, J. (2018). Improving refugee integration through data-driven algorithmic assignment. Science, 359(6373), 325-329. https://doi.org/10.1126/science.aao4408
- Barabas, C., Doyle, C., Rubinovitz, J. B., & Dinakar, K. (2020). Studying Up: Reorienting the study of algorithmic fairness around issues of power. Proceedings of the 2020 ACM Conference on Fairness, Accountability, and Transparency, 167-176. https://doi.org/10.1145/3351095.3372859
- Barocas, S., & Selbst, A. (2016). Big Data's Disparate Impact. California Law Review, 104(1), 671-729. https://doi.org/http://dx.doi.org/10.15779/Z38BG31
- Binns, R. (2018a). Fairness in Machine Learning: Lessons from Political Philosophy. Journal of Machine Learning Research, 81, 1-11. http://arxiv.org/abs/1712.03586
- Binns, R. (2018b). What Can Political Philosophy Teach Us about Algorithmic Fairness? IEEE Security & Privacy, 16(3), 73-80. https://doi.org/10.1109/MSP.2018.2701147
- Binns, R. (2020). Human Judgment in algorithmic loops: Individual justice and automated decision-making. Regulation & Governance, 1-15. https://doi.org/10.1111/rego.12358
- Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018). "It's Reducing a Human Being to a Percentage"; Perceptions of Justice in Algorithmic Decisions. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1-14. https://doi.org/10.1145/3173574.3173951
- Booth, A., Sutton, A., & Papaioannou, D. (2016). Systematic Approaches to a Successful Literature Review (2nd Editio). SAGE Publications Ltd.
- Chouldechova, A. (2017). Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. Big Data, 5(2), 153-163. https://doi.org/10.1089/big.2016.0047
- Colquitt, J. A., & Rodell, J. B. (2015). Measuring Justice and Fairness. In R. S. Cropanzano & M. L. Ambrose (Eds.), The Oxford Handbook of Justice in the Workplace (pp. 187-202). Oxford University Press.
- Deutsch, M. (1975). Equity, Equality, and Need: What Determines Which Value Will Be Used as the Basis of Distributive Justice? Journal of Social Issues, 31(3), 137-149. https://doi.org/10.1111/j.1540-4560.1975.tb01000.x
- Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114-126. https://doi.org/10.1037/xge0000033
- Dodge, J., Vera Liao, Q., Zhang, Y., Bellamy, R. K. E., & Dugan, C. (2019). Explaining models: An empirical study of how explanations impact fairness judgment. International Conference on Intelligent User Interfaces, Proceedings IUI, Part F1476, 275-285. https://doi.org/10.1145/3301275.3302310
- Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness Through Awareness. Proceedings of the 3rd Innovations in Theoretical Computer Science, 214-226. https://doi.org/10.1145/2090236.2090255
- Dworkin, R. (1981). What Is Equality? Part 1: Equality of Welfare. Philosophy & Public Affairs, 10(3), 185-246.
- Favaretto, M., De Clercq, E., & Elger, B. S. (2019). Big Data and discrimination: perils, promises and solutions. A systematic review. Journal of Big Data, 6(1), 12. https://doi.org/10.1186/s40537-019-0177-4
- Gajane, P., & Pechenizkiy, M. (2017). On Formalizing Fairness in Prediction with Machine Learning. ArXiv. http://arxiv.org/abs/1710.03184
- Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627-660. https://doi.org/10.5465/annals.2018.0057
- Greenberg, J. (1987). A Taxonomy of Organizational Justice Theories. Academy of Management Review, 12(1), 9-22. https://doi.org/10.5465/amr.1987.4306437
- Greenberg, J. (1990). Organizational Justice: Yesterdan, Today, and Tomorrow. Journal of Management, 16(2), 399-432. https://doi.org/10.1177/014920639001600208
- Greenberg, J. (1993). The Social Side of Fairness: Interpersonal and Informational Classes of Organizational Justice. In R. Cropanzano (Ed.), Justice in the Workplace: Approaching Fairness in Human Resource Management (pp. 79-103). Lawrence Erlbaum Associates.
- Grgić-Hlača, N., Redmiles, E. M., Gummadi, K. P., & Weller, A. (2018). Human Perceptions of Fairness in Algorithmic Decision Making: A Case Study of Criminal Risk Prediction. Proceedings of the 2018 World Wide Web Conference on World Wide Web, 903-912. https://doi.org/10.1145/3178876.3186138
- Grgić-Hlača, N., Weller, A., & Redmiles, E. M. (2020). Dimensions of Diversity in Human Perceptions of Algorithmic Fairness. In arXiv. arXiv. https://arxiv.org/abs/2005.00808v1
- Grgić-Hlača, N., Zafar, M. B., Gummadi, K. P., & Weller, A. (2018). Beyond Distributive Fairness in Algorithmic Decision Making: Feature Selection for Procedurally Fair Learning. Proceedings of the 32th AAAI Conference on Artificial Intelligence, 51-60.
- Hardt, M., Price, E., & Srebro, N. (2012). Equality of Opportunity in Supervised Learning. Proceedings of the 30th Conference on Neural Information Processing Systems, 3323-3331.
- Harrison, G., Hanson, J., Jacinto, C., Ramirez, J., & Ur, B. (2020). An Empirical Study on the Perceived Fairness of Realistic , Imperfect Machine Learning Models. Proceedings of the 2020 ACM Conference on Fairness, Accountability, and Transparency, 392-402. https://doi.org/10.1145/3351095.3372831
- Helberger, N., Araujo, T., & de Vreese, C. H. (2020). Who is the fairest of them all? Public attitudes and expectations regarding automated decision-making. Computer Law and Security Review, 39. https://doi.org/10.1016/j.clsr.2020.105456
- Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2-3), 61-83. https://doi.org/10.1017/S0140525X0999152X
- Higgins, J. P., & Deeks, J. J. (2008). Selecting studies and collecting data. In J. P. Higgins & S. Green (Eds.), Cochrane Handbook for Systematic Reviews of Interventions (pp. 151-185). John Wiley & Sons Ltd.
- Hutchinson, B., & Mitchell, M. (2019). 50 Years of Test (Un)fairness: Lessons for Machine Learning. Proceedings of the 2019 ACM Conference on Fairness, Accountability, and Transparency, 49-58. https://doi.org/10.1145/3287560.3287600
- Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2
- Jungnickel, K. (2018). New Methods of Measuring Opinion Leadership: A Systematic, Interdisciplinary Literature Analysis. International Journal of Communication, 12, 2702- 2724. https://doi.org/1932-8036/20180005
- Kaibel, C., Koch-Bayram, I., Biemann, T., & Mühlenbock, M. (2019). Applicant Perceptions of Hiring Algorithms -Uniqueness and Discrimination Experiences as Moderators. Academy of Management Proceedings, 2019(1). https://doi.org/10.5465/ambpp.2019.210
- Kasinidou, M., Kleanthous, S., Barlas, P., & Otterbacher, J. (2021). I agree with the decision, but they didn't deserve this. Future Developers' Perception of Fairness in Algorithmic Decisions. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 690-700. https://doi.org/10.1145/3442188.3445931
- Kelley, P. G., Yang, Y., Heldreth, C., Moessner, C., Sedley, A., Kramm, A., Newman, D., & Woodruff, A. (2019). "Happy and assured that life will be easy 10 years from now.": Perceptions of artificial intelligence in 8 countries. In arXiv.
- Kieslich, K., Lünich, M., & Marcinkowski, F. (2021). The Threats of Artificial Intelligence Scale (TAI): Development, Measurement and Test Over Three Application Domains. International Journal of Social Robotics, 1-15. https://doi.org/10.1007/s12369-020-00734- w
- Kleinberg, J., Mullainathan, S., & Raghavan, M. (2017). Inherent trade-offs in the fair determination of risk scores. Leibniz International Proceedings in Informatics, LIPIcs, 67(43), 1-23. https://doi.org/10.4230/LIPIcs.ITCS.2017.43
- Köbis, N., Starke, C., & Rahwan, I. (2021). Artificial Intelligence as an Anti-Corruption Tool (AI-ACT) --Potentials and Pitfalls for Top-down and Bottom-up Approaches. http://arxiv.org/abs/2102.11567
- Köchling, A., & Wehner, M. C. (2020). Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development. Business Research, 1-54. https://doi.org/10.1007/s40685- 020-00134-w
- Koene, A., Perez, E., Ceppi, S., Rovatsos, M., Webb, H., Patel, M., Jirotka, M., & Lane, G. (2017). Algorithmic Fairness in Online Information Mediating Systems. Proceedings of the 2017 ACM on Web Science Conference, 391-392. https://doi.org/10.1145/3091478.3098864
- Kusner, M., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual Fairness. Processings of the Advances in Neural Information Processing Systems, 4066-4076.
- Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 205395171875668. https://doi.org/10.1177/2053951718756684
- Lee, M. K., & Baykal, S. (2017). Algorithmic Mediation in Group Decisions: Fairness Perceptions of Algorithmically Mediated vs. Discussion-Based Social Division. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, 1035-1048. https://doi.org/10.1145/2998181.2998230
- Lee, M. K., Jain, A., Cha, H. J. I. N., Ojha, S., & Kusbit, D. (2019). Procedural justice in algorithmic fairness: Leveraging transparency and outcome control for fair algorithmic mediation. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW). https://doi.org/10.1145/3359284
- Lee, M. K., Kim, J. T., & Lizarondo, L. (2017). A human-centered approach to algorithmic services: Considerations for fair and motivating smart community service management that allocates donations to non-profit organizations. Proceedings of the Conference on Human Factors in Computing Systems, 3365-3376. https://doi.org/10.1145/3025453.3025884
- Lee, M. K., Kusbit, D., Kahng, A., Kim, J. T., Yuan, X., Chan, A., See, D., Noothigattu, R., Lee, S., Psomas, A., & Procaccia, A. D. (2019). Webuildai: Participatory framework for algorithmic governance. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW). https://doi.org/10.1145/3359283
- Lee, M. S. A., & Floridi, L. (2020). Algorithmic Fairness in Mortgage Lending: from Absolute Conditions to Relational Trade-offs. Minds and Machines, 31(1), 165-191. https://doi.org/10.1007/s11023-020-09529-4
- Lefebvre, C., Manheimer, E., & Glanville, J. (2008). Searching for Studies. In J. P. Higgins & S. Green (Eds.), Cochrane Handbook for Systematic Reviews of Interventions (pp. 95-150). John Wiley & Sons Ltd.
- Lepri, B., Oliver, N., Letouzé, E., Pentland, A., & Vinck, P. (2018). Fair, Transparent, and Accountable Algorithmic Decision-making Processes: The Premise, the Proposed Solutions, and the Open Challenges. Philosophy and Technology, 31(4), 611-627. https://doi.org/10.1007/s13347-017-0279-x
- Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124-136. https://doi.org/10.1016/j.ejor.2015.05.030
- Leventhal, G. S. (1980). What Should Be Done with Equity Theory? In K. J. Gergen, M. S. Greenberg, & R. H. Willis (Eds.), Social Exchange (pp. 27-55). Springer US. https://doi.org/10.1007/978-1-4613-3087-5\_2
- Logg, J. M., Minson, J. A., & Moore, D. A. (2019). Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes, 151, 90-103. https://doi.org/10.1016/j.obhdp.2018.12.005
- Marcinkowski, F., Kieslich, K., Starke, C., & Lünich, M. (2020). Implications of AI (un-)fairness in higher education admissions: The Effects of Perceived AI (Un-)Fairness on Exit, Voice and Organizational Reputation. Proceedings of the 2020 ACM on Fairness, Accountability and Transparency, 122-130. https://doi.org/10.1145/3351095.3372867
- Marcinkowski, F., & Starke, C. (2019). Wann ist Künstliche Intelligenz (un)fair? Ein sozialwissenschaftliches Konzept von KI-Fairness. In J. Hofmann, N. Kersting, C. Ritzi, & W. J. Schünemann (Eds.), Politik in der digitalen Gesellschaft: Zentrale Problemfelder und Forschungsperspektiven (pp. 269-288). transcript.
- Marzagão, T. (2017). 'Using AI to fight corruption in the Brazilian government.' Office of the Comptroller General. https://www.youtube.com/watch?v=2prrNVaD- Nc&feature=emb_logo
- Miller, S. M., & Keiser, L. R. (2020). Representative Bureaucracy and Attitudes Toward Automated Decision Making. Journal of Public Administration Research and Theory, 2020, 1-16. https://doi.org/10.1093/jopart/muaa019
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ (Online), 339(7716), 332-336. https://doi.org/10.1136/bmj.b2535
- Nagtegaal, R. (2021). The impact of using algorithms for managerial decisions on public employees' procedural justice. Government Information Quarterly, 38(1), 1-10. https://doi.org/10.1016/j.giq.2020.101536
- Nam, T. (2020). Do the right thing right! Understanding the hopes and hypes of data-based policy. Government Information Quarterly, 37(3). https://doi.org/10.1016/j.giq.2020.101491
- Newman, D. T., Fast, N. J., & Harmon, D. J. (2020). When eliminating bias isn't fair: Algorithmic reductionism and procedural justice in human resource decisions. Organizational Behavior and Human Decision Processes, 160(March), 149-167. https://doi.org/10.1016/j.obhdp.2020.03.008
- Noriega-Campero, A., Garcia-Bulle, B., Cantu, L. F., Bakker, M. A., Tejerina, L., & Pentland, A. (2020). Algorithmic targeting of social policies: Fairness, accuracy, and distributed governance. Proceedings of the 2020 ACM Conference on Fairness, Accountability, and Transparency, 241-251. https://doi.org/10.1145/3351095.3375784
- Nyarko, J., Goel, S., & Sommers, R. (2020). Breaking Taboos in Fair Machine Learning: An Experimental Study.
- OECD. (2019). Recommendation of the Council on OECD Legal Instruments Artificial Intelligence. https://www.oecd.ai/ai-principles
- Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences. Blackwell Publishing Ltd.
- Pierson, E. (2017). Demographics and discussion influence views on algorithmic fairness. http://arxiv.org/abs/1712.09124
- Plane, A. C., Redmiles, E. M., Mazurek, M. L., & Tschantz, M. C. (2017). Exploring user perceptions of discrimination in online targeted advertising. Proceedings of the 26th USENIX Security Symposium, 935-951.
- Rahwan, I. (2018). Society-in-the-loop: programming the algorithmic social contract. Ethics and Information Technology, 20(1), 5-14. https://doi.org/10.1007/s10676-017-9430-8
- Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Crandall, J. W. , Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar, E., Kloumann, I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D. C., Pentland, A. 'Sandy,' … Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486. https://doi.org/10.1038/s41586-019-1138-y
- Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. New England Journal of Medicine, 380(14), 1347-1358. https://doi.org/10.1056/NEJMra1814259
- Richardson, R., Schultz, J. M., & Southerland, V. M. (2019). Litigating Algorithms 2019 US Report: New Challenges to Government Use of Algorithmic Decision Systems (Issue September). https://ainowinstitute.org/litigatingalgorithms-2019-us.html
- Sambasivan, N., Arnesen, E., Hutchinson, B., Doshi, T., & Prabhakaran, V. (2021). Re-imagining Algorithmic Fairness in India and Beyond. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 315-328. https://doi.org/10.1145/3442188.3445896
- Saxena, N. A., Huang, K., DeFilippis, E., Radanovic, G., Parkes, D. C., & Liu, Y. (2020). How do fairness definitions fare? Examining public attitudes towards algorithmic definitions of fairness. Artificial Intelligence, 283, 103238. https://doi.org/10.1145/3306618.3314248
- Sen, A. (1990). Justice: Means versus Freedoms. Philosophy & Public Affairs, 19(2), 111-121.
- Shin, D. (2020). User Perceptions of Algorithmic Decisions in the Personalized AI System: Perceptual Evaluation of Fairness, Accountability, Transparency, and Explainability. Journal of Broadcasting & Electronic Media, 1-25. https://doi.org/10.1080/08838151.2020.1843357
- Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human Computer Studies, 146, 102551. https://doi.org/10.1016/j.ijhcs.2020.102551
- Shin, D., & Park, Y. J. (2019). Role of fairness, accountability, and transparency in algorithmic affordance. Computers in Human Behavior, 98(April), 277-284. https://doi.org/10.1016/j.chb.2019.04.019
- Shin, D., Zhong, B., & Biocca, F. A. (2020). Beyond user experience: What constitutes algorithmic experiences? International Journal of Information 52, 102061. https://doi.org/10.1016/j.ijinfomgt.2019.102061
- Sloane, M., & Moss, E. (2019). AI's social sciences deficit. Nature Machine Intelligence, 1(August), 330-331. https://doi.org/10.1038/s42256-019-0084-6
- Srivastava, M., Heidari, H., & Krause, A. (2019). Mathematical notions vs. Human perception of fairness: A descriptive approach to fairness for machine learning. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2459-2468. https://doi.org/10.1145/3292500.3330664
- Starke, C., & Lünich, M. (2020). Artificial intelligence for political decision-making in the European Union: Effects on citizens' perceptions of input, throughput, and output legitimacy. Data & Policy, 2, e16. https://doi.org/10.1017/dap.2020.19
- Suen, H. Y., Chen, M. Y. C., & Lu, S. H. (2019). Does the use of synchrony and artificial intelligence in video interviews affect interview ratings and applicant attitudes? Computers in Human Behavior, 98, 93-101. https://doi.org/10.1016/j.chb.2019.04.012
- Vallejos, E. P., Koene, A., Portillo, V., Dowthwaite, L., & Cano, M. (2017). Young people's policy recommendations on algorithm fairness. Proceedings of the 2017 ACM Web Science Conference, 247-251. https://doi.org/10.1145/3091478.3091512
- Van Berkel, N., Goncalves, J., Hettiachchi, D., Wijenayake, S., Kelly, R. M., & Kostakos, V. (2019). Crowdsourcing perceptions of fair predictors for machine learning: A recidivism case study. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW). https://doi.org/10.1145/3359130
- Veale, M., & Binns, R. (2017). Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society, 4(2), 1-17. https://doi.org/10.1177/2053951717743530
- Verma, S., & Rubin, J. (2018). Fairness Definitions Explained. Proceedings of the ACM/IEEE International Workshop on Software Fairness, 1-7. https://doi.org/10.1145/3194770.3194776
- Wang, A. J. (2018). Procedural Justice and Risk-Assessment Algorithms. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3170136
- Wang, R., Harper, F. M., & Zhu, H. (2020). Factors Influencing Perceived Fairness in Algorithmic Decision-Making: Algorithm Outcomes, Development Procedures, and Individual Differences. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1-14. https://doi.org/10.1145/3313831.3376813
- Wirtz, B. W., Weyerer, J. C., & Geyer, C. (2019). Artificial Intelligence and the Public Sector- Applications and Challenges. International Journal of Public Administration, 42(7), 596- 615. https://doi.org/10.1080/01900692.2018.1498103
- Wong, P. H. (2020). Democratizing Algorithmic Fairness. Philosophy and Technology, 33(2), 225-244. https://doi.org/10.1007/s13347-019-00355-w
- Zafar, M. B., Valera, I., Rodriguez, M. G., Gummadi, K. P., & Weller, A. (2017). From parity to preference-based notions of fairness in classification. 31st Conference on Neural Information Processing Systems.
- Završnik, A. (2020). Criminal justice, artificial intelligence systems, and human rights. ERA Forum, 20(4), 567-583. https://doi.org/10.1007/s12027-020-00602-0
- Žliobaitė, I. (2017). Measuring discrimination in algorithmic decision making. Data Mining and Knowledge Discovery, 31(4), 1060-1089. https://doi.org/10.1007/s10618-017-0506-1