Soft Robotic Snake with Variable Stiffness Actuation (original) (raw)

In this paper, we present a prototype of a 3D printed snake-like robot for search and rescue applications, inspired by biological snake anatomy and locomotion. Unlike traditional robotics, this design takes advantage of soft materials to create a robot that is resilient to shock impacts, such as from falling debris or unsound flooring, and that can very its stiffness. The robot uses a flexible spine to connect multiple sections, allowing controlled actuation while providing a sturdy structure. Variable stiffness actuation is implemented through the use of elastic materials to act as tendons for the body, in an agonist-antagonist setup. Actuation occurs through the use of Robotis Dynamixel AX-12A servos, controlled by a Trossen Robotics Arbotix-M Robocontroller. The design features a head, containing a Raspberry Pi 3 and a Pi Camera Module. This added embedded computation can connect to a remote PC via wireless communication, allowing an operator to control the robot. This paper disc...