Topological entropy of one-dimensional maps: Approximations and bounds (original) (raw)

Abstract

We present a method for computing the topological entropy of one-dimensional maps. As an approxi- mation scheme, the algorithm converges rapidly and provides both upper and lo~er bounds.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (17)

  1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, Trans. Am. Math. Soc. 114, 309 (1965).
  2. C. Tresser and P. Coullet, C. R. Acad. Sci. Paris A 287, 577 (1978).
  3. M. Vishik (unpublished). See also J. M. Finn, J. D. Han- son, I. Kan, and E. Ott, Phys. Fluids B 3, 1250 (1991).
  4. P. Collet, J. P. Crutchfield, and J.-P. Eckmann, Commun. Math. Phys. 88, 257 (1983);
  5. L. Block, J. Keesling, S. Li, and K. Peterson, J. Stat. Phys. 55, 929 (1989).
  6. L. Block and J. Keesling, J. Stat. Phys. 66, 755 (1992).
  7. P. Gora and A. Boyarsky, Trans. Am. Math. Soc. 323, 39 (1991).
  8. M. Misiurewicz and W. Szlenk, Studia Mathematica 67, 45 (1980).
  9. In one standard definition [R. Bowen, Trans. Am. Math. Soc. 153, 401 (1971)],we consider a map f from the unit cube in Euclidean space (or any compact space) to itself. A set of points in the cube is said to be n -e separated if, for each pair of points (x,y) in the set, with xWy, there exists an m greater than zero and less than n such that f (x) and f (y) are separated by more than e. Let Ã, be the maximal number of points in any set that is n -e separated. For fixed e we let n go to infinity and look at the rate of increase of the monotonic upper bound of JV', with n. The limit of this rate as t. 0 is the topological entropy of f.
  10. F. C. Hoppensteadt, Analysis and Simulation of Chaotic Systems (Springer-Verlag, Berlin, 1993).
  11. W. F Gantm. acher, Theory of Matrices (Chelsea, New York, 1959), Vol. I.
  12. I] See, for example, C. S. Hsu and M. C. Kim, Phys. Rev. A 31, 3253 (1985).
  13. J. Milnor and W. Thurston, in Dynamical Systems, edit- ed by James C. 'Alexander, Lecture Notes in Mathemat- ics Vol. 1342 (Springer, Berlin, 1988), p. 465.
  14. H. Hayashi, S. Ishizuka, M. Ohta, and K. Hirokawa, Phys. Lett. 88A, 435 (1982).
  15. L. Bloch and E. Coven, in Dynamical Systems and Er godic Theory (Polish Sci. Publishers, Warsaw, 1989), p. 237.
  16. S. E. Newhouse, Ergod. Th. Dynam. Syst. 8, 283 (1988);
  17. Y. Yomdin, Israel J. Math. 57, 285 (1980); 57, 301 (1980).