Topological entropy of one-dimensional maps: Approximations and bounds (original) (raw)
Abstract
We present a method for computing the topological entropy of one-dimensional maps. As an approxi- mation scheme, the algorithm converges rapidly and provides both upper and lo~er bounds.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (17)
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Trans. Am. Math. Soc. 114, 309 (1965).
- C. Tresser and P. Coullet, C. R. Acad. Sci. Paris A 287, 577 (1978).
- M. Vishik (unpublished). See also J. M. Finn, J. D. Han- son, I. Kan, and E. Ott, Phys. Fluids B 3, 1250 (1991).
- P. Collet, J. P. Crutchfield, and J.-P. Eckmann, Commun. Math. Phys. 88, 257 (1983);
- L. Block, J. Keesling, S. Li, and K. Peterson, J. Stat. Phys. 55, 929 (1989).
- L. Block and J. Keesling, J. Stat. Phys. 66, 755 (1992).
- P. Gora and A. Boyarsky, Trans. Am. Math. Soc. 323, 39 (1991).
- M. Misiurewicz and W. Szlenk, Studia Mathematica 67, 45 (1980).
- In one standard definition [R. Bowen, Trans. Am. Math. Soc. 153, 401 (1971)],we consider a map f from the unit cube in Euclidean space (or any compact space) to itself. A set of points in the cube is said to be n -e separated if, for each pair of points (x,y) in the set, with xWy, there exists an m greater than zero and less than n such that f (x) and f (y) are separated by more than e. Let Ã, be the maximal number of points in any set that is n -e separated. For fixed e we let n go to infinity and look at the rate of increase of the monotonic upper bound of JV', with n. The limit of this rate as t. 0 is the topological entropy of f.
- F. C. Hoppensteadt, Analysis and Simulation of Chaotic Systems (Springer-Verlag, Berlin, 1993).
- W. F Gantm. acher, Theory of Matrices (Chelsea, New York, 1959), Vol. I.
- I] See, for example, C. S. Hsu and M. C. Kim, Phys. Rev. A 31, 3253 (1985).
- J. Milnor and W. Thurston, in Dynamical Systems, edit- ed by James C. 'Alexander, Lecture Notes in Mathemat- ics Vol. 1342 (Springer, Berlin, 1988), p. 465.
- H. Hayashi, S. Ishizuka, M. Ohta, and K. Hirokawa, Phys. Lett. 88A, 435 (1982).
- L. Bloch and E. Coven, in Dynamical Systems and Er godic Theory (Polish Sci. Publishers, Warsaw, 1989), p. 237.
- S. E. Newhouse, Ergod. Th. Dynam. Syst. 8, 283 (1988);
- Y. Yomdin, Israel J. Math. 57, 285 (1980); 57, 301 (1980).