Superclusters of galaxies in the 2dF redshift survey (original) (raw)

Abstract

Context. Superclusters are the largest systems in the Universe to give us information about the very early Universe. Our present series of papers is devoted to the study of the properties of superclusters of galaxies from the 2dF Galaxy Redshift survey. Aims. We use catalogues of superclusters of galaxies from the 2dF Galaxy Redshift Survey to compare the properties of rich and poor superclusters. In particular, we study the properties of galaxies (spectral types, colours, and luminosities) in superclusters. Methods. We compare the distribution of densities in rich and poor superclusters, and the properties of galaxies in high and lowdensity regions of rich superclusters, in poor superclusters, and in the field. In superclusters and in the field, we also compare the properties of galaxies in groups, and the properties of those galaxies which do not belong to any group. Results. We show that in rich superclusters the values of the luminosity density smoothed on a scale of 8 h −1 Mpc are higher than in poor superclusters: the median density in rich superclusters is δ ≈ 7.5 and in poor superclusters δ ≈ 6.0. Rich superclusters contain high-density cores with densities δ > 10, while in poor superclusters such high-density cores are absent. The properties of galaxies in rich and poor superclusters and in the field are different: the fraction of early type, passive galaxies in rich superclusters is slightly higher than in poor superclusters, and is the lowest among the field galaxies. Most importantly, in high-density cores of rich superclusters (δ > 10), there is an excess of early type, passive galaxies in groups and clusters, as well as among those which do not belong to any group. The main galaxies of superclusters have a rather limited range of absolute magnitudes. The main galaxies of rich superclusters have higher luminosities than those of poor superclusters and of groups in the field. Conclusions. Our results show that both the local (group/cluster) environments and global (supercluster) environments influence galaxy morphologies and their star formation activity.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (75)

  1. Abell, G. 1958, ApJS, 3, 211
  2. Abell, G., Corwin, H., & Olowin, R. 1989, ApJS, 70, 1
  3. Bahcall, N., McKay, T. A., Annis, J., et al. 2003, ApJS, 148, 243
  4. Balogh, M., Eke, V., Miller, C., et al. 2004a, MNRAS, 348, 1355
  5. Balogh, M., Baldry, I., Nichol, R., et al. 2004b, ApJ, 615, L101
  6. Basilakos, S. 2003, MNRAS, 344, 602
  7. Belsole, E., Pratt, G. W., Sauvageot, J.-L-., & Bourdin, H. 2004, A&A, 415, 821
  8. Blanton, M. R., Eisenstein, D., Hogg, D. W., et al. 2004, ApJ, 629, 143
  9. Blanton, M. R., Eisenstein, D., Hogg, D. W., et al. 2006, ApJ, 645, 977
  10. Broadhurst, T. J., Ellis, R. S., Koo, D. C., & Szalay, A. S. 1990, Nature, 343, 726
  11. Cole, S., Percival, W. J., Peacock, J. A., et al. 2005, MNRAS, 362, 505
  12. Colless, M. M., Dalton, G. B., Maddox, S. J., et al. 2001, MNRAS, 328, 1039
  13. Colless, M. M., Peterson, B. A., Jackson, C. A., et al. 2003 [arXiv:astro-ph/0306581]
  14. Croton, D. J., Farrar, G. R., Norberg, P., et al. 2005, MNRAS, 356, 1155
  15. Croton, D. J., Springel, V., White, S. D. M., et al. 2006, MNRAS, 367, 864
  16. Davis, M., & Geller, M. J. 1976, ApJ, 208, 13
  17. De Propris, R., et al. 2002, MNRAS, 329, 87
  18. De Propris, R., et al. 2003, MNRAS, 342, 725
  19. De Propris, R., et al. 2004, MNRAS, 351, 125
  20. Dressler, A. 1980, ApJ, 236, 351
  21. Einasto, J., Einasto, M., Gottlöber, S., et al. 1997a, Nature, 385, 139
  22. Einasto, J., Einasto, M., Tago, E., et al. 1999, ApJ, 519, 456
  23. Einasto, J., Einasto, M., Hütsi, G., et al. 2003a, A&A, 410, 425 (E03a)
  24. Einasto, J., Hütsi, G., Einasto, M., et al. 2003b, A&A, 405, 425 (E03b)
  25. Einasto, J., Tago, E., Einasto, M., & Saar, E. 2005a, in Nearby Large-Scale Structures and the Zone of Avoidance, ed. A. P. Fairall, & P. Woudt, ASP Conf. Ser., 329, 27
  26. Einasto, J., Tago, E., Einasto, M., et al. 2005b, A&A, 439, 45 (E05b)
  27. Einasto, J., Einasto, M., Tago, E., et al. 2007a, A&A, 462, 811 (Paper I)
  28. Einasto, J., Einasto, M., Saar, E., et al. 2007b, A&A, 462, 397 (Paper II) Einasto, M. 1991, MNRAS, 252, 261
  29. Einasto, M., & Einasto, J. 1987, MNRAS, 226, 543 (E87)
  30. Einasto, M., Einasto, J., Tago, E., Dalton, G., & Andernach, H. 1994, MNRAS, 269, 301 (E94)
  31. Einasto, M., Tago, E., Jaaniste, J., Einasto, J., & Andernach, H. 1997b, A&AS, 123, 119
  32. Einasto, M., Einasto, J., Tago, E., Müller, V., & Andernach, H. 2001, AJ, 122, 2222 (E01)
  33. Einasto, M., Einasto, J., Müller, V., Heinämäki, P., & Tucker, D. L. 2003c, A&A, 401, 851
  34. Einasto, M., Jaaniste, J., Einasto, J., et al. 2003d, A&A, 405, 821
  35. Eke, V. R., Baugh, C. M., Cole, S., et al. 2004, MNRAS, 348, 866
  36. Erdogdu, P., Lahav, O., Zaroubi, S., et al. 2004, MNRAS, 352, 939
  37. Gao, L., White, S. D. M., Jenkins, A., et al. 2005a, MNRAS, 363, 379
  38. Gao, L., Springel, V., & White, S. D. M. 2005b, MNRAS, 363, 66
  39. Giovanelli, R., Haynes, M. P., & Chincarini, G. L. 1986, ApJ, 300, 77
  40. Goto, T., Okamura, S., Sekiguchi, M., et al. 2003, PASJ, 55, 757
  41. Gray, M. E., Wolf, C., Meisenheimer, K., et al. 2004, MNRAS, 347, L73
  42. Haines, C. P., Merluzzi, P., Mercurio, A., et al. 2006, MN, 371, 55
  43. Hamilton, A. J. S. 1988, ApJ, 331, L59
  44. Hilton, M., Collins, C., De Propris, R., et al. 2005, MNRAS, 363, 661
  45. Hogg, D. W., Blanton, M. R., Eisenstein, D. J., et al. 2003, ApJ, 585, L5
  46. Hogg, D. W., Blanton, M. R., Brinchmann, J., et al. 2004, ApJ, 601, L29 Hubble, E. 1936, ApJ, 84, 270
  47. Hubble, E., & Humason, M. L. 1931, ApJ, 74, 43
  48. Huchra, J. P., & Geller, M. J. 1982, ApJ, 257, 423
  49. Ihaka, R., & Gentleman, R. 1996, J. of Computational and Graphical Statistics, 5, 299
  50. Kauffmann, G., White, S., Heckman, T., et al. 2004, MNRAS, 353, 713
  51. Kennicutt, R. C. J. 1992, ApJS, 79, 255
  52. Lahav, O. 2004, Pub. Astr. Soc. Australia, 21, 404
  53. Lahav, O. 2005, in Nearby Large-Scale Structures and the Zone of Avoidance, ed. A. P. Fairall, & P. Woudt, ASP Conf. Ser., 329, 3
  54. Laine, S., van der Marel, R., Lauer, T. R., et al. 2003, AJ, 125, 478
  55. Lewis, I., Balogh, M., De Propris, R., et al. 2002, MNRAS, 334, 673
  56. Madgwick, D. S., Lahav, O., Baldry, I. K., et al. 2002, MNRAS, 333, 133
  57. Madgwick, D. S., Somerville, R., Lahav, O., & Ellis, R. 2003a, MNRAS, 343, 871
  58. Madgwick, D. S., Hawkins, E., Lahav, O., et al. 2003b, MNRAS, 344, 847
  59. Mo, H. J., Einasto, M., Xia, X. Y., & Deng, Z. G. 1992, MNRAS, 255, 382
  60. Norberg, P., Baugh, C. M., Hawkins, E., et al. 2001, MNRAS, 328, 64
  61. Norberg, P., Baugh, C. M., Hawkins, E., et al. 2002a, MNRAS, 332, 827
  62. Norberg, P., Cole, S., Baugh, C. M., et al. 2002b, MNRAS, 336, 907
  63. Oort, J. H. 1983, ARA&A, 21, 373
  64. Phillipps, S., Driver, S. P., Couch, W. J., & Smith, R. M. 1998, ApJ, 498, L119
  65. Porter, S. C., & Raychaudhury, S. 2005, MNRAS, 364, 1387
  66. Postman, M., & Lauer, T. R. 1995, ApJ, 440, 28
  67. Sandage, A. 1976, ApJ, 205, 6
  68. Schechter, P. 1976, ApJ, 203, 297
  69. Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629
  70. Tago, E., Einasto, J., Saar, E., et al. 2006, AN, 327, 365 (T06)
  71. Tucker, D. L., Oemler, A. Jr., Hashimoto, Y., et al. 2000, ApJS, 130, 237
  72. Wild, V., Peacock, J. A., Lahav, O., et al. (the 2dFGRS Team) 2005, MNRAS, 356, 247
  73. Yang, X., Mo, H. J., van den Bosch, F. C., & Jing, Y. P. 2004, MNRAS, 357, 608
  74. Zehavi, I., Blanton, M. R., Frieman, J. A., et al. 2002, ApJ, 571, 172
  75. Zucca, E., Zamorani, G., Scaramella, R., & Vettolani, G. 1993, ApJ, 407, 470