Novel Models to Manage Biofilms on Microtextured Dental Implant Surfaces (original) (raw)

Biofilm Formation on Dental Implant Surface Treated by Implantoplasty: An In Situ Study

Dentistry Journal, 2020

Peri-implantitis is a biofilm-related disease whose characteristics are peri-implant tissues inflammation and bone resorption. Some clinical trials report beneficial effects after implantoplasty, namely the surgical smoothening of the implant surface, but there is a lack of data about the development of the bacterial biofilm on those smoothened surfaces. The aim of this study is to evaluate how implantoplasty influences biofilm formation. Three implants with moderately rough surfaces (control) and three implants treated with implantoplasty (test) were set on a tray reproducing the supra- and sub-gingival environment. One volunteer wore this tray for five days. Every 24 h, plaque coverage was measured and, at the end of the period of observartion, the implant surfaces were analyzed using scanning electron microscopy and confocal laser scanning microscopy. The proportion of implant surface covered with plaque was 65% (SD = 7.07) of the control implants and 16% (SD = 0) of the test imp...

Advanced surface treatment techniques counteract biofilm-associated infections on dental implants

Materials Research Express, 2020

Topography and surface chemistry can significantly affect biofilm formation on dental implants. Recently, the γ-TiAl alloy was considered as the most reliable candidates for the preparation of dental implants because of its excellent mechanical strength, chemical stability and biocompatibility. The emphasis of this study lies in the effects of high-speed milling assisted the minimum quantity of lubrication (HSM-MQL), micro-current wire electrical discharge machining (mWEDM), Er,Cr:YSGG laser and sandblasting/large-grit/acid-etching (SLA) treatments on surface morphology, topography, chemical composition, wettability and biofilm-associated infections on the surface of each group. The surface-treated samples were analyzed using a scanning electron microscope (SEM), SEM surface reconstruction, energy dispersive x-ray spectroscopy (EDS) and water contact angle measuring system. SEM and topography images of mWEDM and laser-treated surfaces showed more irregular surfaces compared to SLA and HSM-MQL surfaces. Results showed that mWEDM and laser-treated surfaces revealed hydrophobic behavior. A significant decrease of biofilm formation was observed on mWEDM treated surface due to the hydrophobicity and existence of the copper element in the recast layer chemical composition. Moreover, EDS confirmed that the zirconium, silicon, and fluorine elements were decorated onto the SLA treated γ-TiAl surface that can have a direct effect on the anti-bacterial activity.

Initial oral biofilm formation on titanium implants with different surface treatments: an in vivo study

Archives of Oral Biology, 2016

The aim of this study was to examine in vivo the initial bacterial adhesion on titanium implants with different surface treatments. Design: Ten subjects wore oral splints containing machined pure titanium disks (Ti-M), acid-etched titanium (Ti-AE) and anodized and laser irradiated disks (Ti-AL) for 24 h. After this period, disks were removed from the splints and adherent bacteria were quantified by an enzymatic assay to assess total viable bacteria and by Real Time PCR to evaluate total bacteria and Streptococcus oralis levels. Additionally, the initial adherent microorganisms were visualized by scanning electron microscopy (SEM). Titanium surface morphology was verified using SEM, and roughness was evaluated by profilometer analysis. Results: Regarding titanium surface roughness, Ti-AL (1.423 AE 0.397) showed significantly higher Ra values than did Ti-M (0.771 AE 0.182) and Ti-AE (0.735 AE 0.196) (p < 0.05, ANOVA-Tahame). Ti-AE and Ti-AL presented roughened micro-structure surfaces characterized by open pores, whereas Ti-M showed long grooves alternating with planed areas. Comparing the Ti-M, Ti-AE and Ti-AL groups for viable bacteria (MTT assay), total bacteria and S. oralis quantification (qPCR), no significant differences were observed among these three groups (p > 0.05, ANOVA-Tahame). SEM images showed similar bacterial adhesion on the three titanium surfaces, predominantly characterized by cocci and several bacilli, indicating an initial colonization of the oral biofilm. Conclusion: In conclusion, roughness and microtopography did not stimulate initial biofilm formation on titanium surfaces with different surface treatments.

In vitroevaluation of a multispecies oral biofilm on different implant surfaces

Biomedical Materials, 2014

Peri-implantitis is an infectious disease that affects the supporting soft and hard tissues around dental implants and its prevalence is increasing considerably. The development of antibacterial strategies, such as titanium antibacterial-coated surfaces, may be a promising strategy to prevent the onset and progression of peri-implantitis. The aim of this study was to quantify the biofilm adhesion and bacterial cell viability over titanium disc with or without antibacterial surface treatment. Five bacterial strains were used to develop a multispecies oral biofilm. The selected species represent initial (Streptococcus oralis and Actinomyces viscosus), early (Veillonella parvula), secondary (Fusobacterium nucleatum) and late (Porphyromonas gingivalis) colonizers. Bacteria were sequentially inoculated over seven different types of titanium surfaces, combining different roughness level and antibacterial coatings: silver nanoparticles and TESPSA silanization. Biofilm formation, cellular viability and bacterial quantification over each surface were analyzed using scanning electron microscopy, confocal microscopy and real time PCR. Biofilm formation over titanium surfaces with different bacterial morphologies could be observed. TESPSA was able to significantly reduce the cellular viability when compared to all the surfaces (p < 0.05). Silver deposition on titanium surface did not show improved results in terms of biofilm adhesion and cellular viability when compared to its corresponding non-coated surface. The total amount of bacterial biofilm did not significantly differ between groups (p > 0.05). TESPSA was able to reduce biofilm adhesion and cellular viability. However, silver deposition on titanium surface seemed not to confer these antibacterial properties.

Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics

Biomaterials, 2007

Micro-implants are increasingly popular in clinical orthodontics to effect skeletal anchorage. However, biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these devices. The present study aimed to assess biofilm formation on five commercially available, surface characterized micro-implant systems in vitro. The elemental surface compositions of as-received and autoclave-sterilized micro-implants were characterized by X-ray photoelectron spectroscopy. High carbon contamination was detected on the oxide surfaces, along with traces of inorganic elements (Ca, Cu, Cr, Pb, Zn, and P) which disappeared after Ar + ion sputtering. The mean surface roughnesses (R a ) were around 182 nm for titanium microimplants, and 69 nm for stainless steel micro-implants, as measured by atomic force microscopy. Scanning electron microscopy revealed different surface topographies between manufacturers, varying from typical machined grooves to structural defects like pores and pits. Overnight biofilms were grown on micro-implant surfaces by immersion in pooled human whole saliva. Biofilms on micro-implants treated with chlorhexidine and fluoride mouthrinses contained comparable numbers of viable organisms, but significantly less than did untreated micro-implants. Comparison of different implant systems using multiple linear regression analysis indicated that biofilm formation was governed by roughness of the implant surface and the prevalence of carbon-and oxygen-rich components. r

Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation

PloS one, 2018

Micro- or nano-topography can both provide antimicrobial properties and improve osseointegration of dental implant titanium surfaces. Laser treatment is one of the best surface microtexturing techniques. The aim of this study was to evaluate in vitro and in situ biofilm formation on a laser-treated titanium surface, comparing it with two conventional surfaces, machined and grit-blasted. For the in vitro experiment, an oral microcosm biofilm model was developed on the surface of titanium disks and reference human enamel using a bioreactor for 48 h. For the in situ experiment, titanium implants with laser-treated, machined and grit-blasted surfaces were mounted on intraoral trays and worn by ten volunteers for 48 h. Biofilm formation was quantitatively evaluated, and surfaces were analyzed using confocal laser scanning microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Biofilm structures with a prevalence of viable cells covered most of the machined, gr...

Effects of oral implant surface roughness on bacterial biofilm formation and treatment efficacy

The International journal of oral & maxillofacial implants

The aim of this study was to investigate the influence of oral implant surface roughness on bacterial biofilm formation and antimicrobial treatment efficacy. Titanium disks with low-roughness pickled surfaces and with moderately rough sandblasted, acid-etched surfaces were used as substrata. Streptococcus mutans biofilms (1 and 3 days old) and Porphyromonas gingivalis biofilms (3 days old) were grown on the two types of substrata and then treated with 0.2% chlorhexidine. Biofilm viability was evaluated by a resazurin metabolism assay and by sonication-colony-forming unit counts. Surface roughness had no influence on the amount of biofilm formation by S mutans or P gingivalis in this in vitro biofilm model. However, it strongly affected the treatment efficacy of chlorhexidine on the biofilms formed by both species. Higher roughness resulted in lower efficacy. Furthermore, treatment efficacy was significantly reduced in older biofilms. A moderately roughened surface did not enhance bi...