Prenatal hypoxia impairs the postnatal development of neural and functional chemoafferent pathway in rat (original) (raw)

2000, The Journal of Physiology

Abstract

Perinatal hypoxia can cause various short-term, long-term or life-spanning sequelae. Early postnatal hypoxic exposure within the first days of life induces adverse and long-term effects on postnatal growth ), neurobehavioural development (Nyakas et al. 1996), breathing and ventilatory response to hypoxia ) and development of central catecholaminergic areas involved in respiratory control . Postnatal breathing onset and respiratory control are dependent on the peripheral chemoreceptors. Chemosensitivity is low in the fetus and resets to a higher Oµ level within a couple of days after birth ). However, the peripheral chemoreceptors and their integrative ventilatory response are not mature at birth and are susceptible to modulation by changes in environmental oxygen occurring during the early postnatal period. In fact, prolonged hypoxic exposure from birth increases the basal activity of the carotid bodies , delays the onset of the chemoreflex response to hypoxia ) and elicits hyperventilation in adults . However, prolonged perinatal hyperoxia induces a hypoplasia of carotid bodies , may accelerate the chemoreflex response to hypoxia and attenuates the hypoxic ventilatory response in adult rats . Fetal hypoxia might result from several pathophysiological situations including maternal anaemia, reduced uteroplacental blood flow secondary to maternal hypertension, smoking or ethanol consumption, reduced placenta size or reduced oxygen inhalation by the mother at high altitude. Prenatal hypoxia elicits many disturbances which are manifest at and after birth. Reduced fetal growth ), as well as cognitive and motor deficiency , results from hypoxic insult during gestation. Rats born after hypoxic gestation present, at 1 day of postnatal age, respiratory as well as metabolic disturbances characteristic of hypoxaemia of the newborn

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (50)

  1. Bartlett, D. Jr & Tenney, S. M. (1970). Control of breathing in experimental anemia. Respiration Physiology 10, 384-395.
  2. Blanco, C. E., Hanson, M. A., Johnson, P. & Rigatto, H. (1984). Breathing pattern of kittens during hypoxia. Journal of Applied Physiology 56, 12-17.
  3. Borday, V., Fortin, G. & Champagnat, J. (1997). Early ontogeny of rhythm generation and control of breathing. Respiration Physiology 110, 245-249.
  4. Champagnat, J. & Fortin, G. (1997). Primordial respiratory-like rhythm generation in the vertebrate embryo. Trends in Neurosciences 20, 119-124.
  5. Clark, F. J. & von Euler, C. (1972). On the regulation of depth and rate of breathing. Journal of Physiology 222, 267-295.
  6. Davey, M. G., Moss, T. J., McCrabb, G. J. & Harding, R. (1996). Prematurity alters hypoxic and hypercapnic ventilatory responses in developing lambs. Respiration Physiology 105, 57-67.
  7. De Grauw, T. J., Myers, R. E. & Scott, W. J. (1986). Foetal growth retardation in rats from different levels of hypoxia. Biology of the Neonate 49, 85-89.
  8. Depocas, F. & Hart, J. S. (1957). Use of the Pauling oxygen analyser for measurement of oxygen consumption of animals in open-circuit and in a short lag closed-circuit apparatus. Journal of Applied Physiology 10, 388-392.
  9. Eden, G. J. & Hanson, M. A. (1986). Effect of hyperoxia from birth on the carotid chemoreceptor and ventilatory response to acute hypoxia Journal of Physiology 374, 24P.
  10. Eden, G. J. & Hanson, M. A. (1987). Maturation of the respiratory response to acute hypoxia in the newborn rat. Journal of Physiology 392, 1-9.
  11. Ellenberger, H. H., Feldman, J. L. & Zhan, W. Z. (1990). Subnuclear organisation of the lateral tegmental field of the rat. II: Catecholamine neurones and ventral respiratory group. Journal of Comparative Neurology 294, 212-222.
  12. Erickson, J. T., Conover, J. C., Borday, V., Champagnat, J., Barbacid, M., Yancopoulos, G. & Katz, D. M. (1996). Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neurone losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. Journal of Neuroscience 16, 5361-5371.
  13. Erickson, J. T., Mayer, C., Jawa, A., Ling, L., Olson, E. B. Jr, Vidruk, E. H., Mitchell, G. S. & Katz, D. M. (1998). Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats. Journal of Physiology 509, 519-526.
  14. Errchidi, S., Monteau, R. & Hilaire, G. (1991). Noradrenergic modulation of the medullary respiratory rhythm generator in the newborn rat: an in vitro study. Journal of Physiology 443, 477-498.
  15. Finley, J. C. & Katz, D. M. (1992). The central organisation of carotid body afferent projections to the brainstem of the rat. Brain Research 572, 108-116.
  16. Gauda, E. B., Bamford, O. & Gerfen, C. R. (1996). Developmental expression of tyrosine hydroxylase, D2-dopamine receptor and substance P genes in the carotid body of the rat. Neuroscience 75, 969-977.
  17. Gleed, R. D. & Mortola, J. P. (1991). Ventilation in new-born rats after gestation at simulated high altitude. Journal of Applied Physiology 70, 1146-1151.
  18. Guyenet, P. G., Koshiya, N., Huangfu, D., Verberne, A. J. & Riley, T. A. (1993). Central respiratory control of A5 and A6 pontine noradrenergic neurons. American Journal of Physiology 264, R1035-1044.
  19. Harvey, L. M., Gilbert, R. D., Longo, L. D. & Ducsay, C. A. (1993). Changes in ovine foetal adrenocortical responsiveness after long- term hypoxemia. American Journal of Physiology 264, E741-747.
  20. Hertzberg, T., Hellstr om, S., Holgert, H., Lagercrantz, H. & Pequignot, J. M. (1992). Ventilatory response to hyperoxia in newborn rats born in hypoxia -possible relationship to carotid body dopamine. Journal of Physiology 456, 645-654.
  21. Hertzberg, T., Hellstr om, S., Lagercrantz, H. & Pequignot, J. M. (1990). Development of the arterial chemoreflex and turnover of carotid body catecholamines in the newborn rat. Journal of Physiology 425, 211-225.
  22. Hilaire, G., Morin, D., Lajard, A.-M. & Monteau, R. (1993). Changes in serotonin metabolism may elicit obstructive apnoea in the newborn rat. Journal of Physiology 466, 367-382.
  23. Housley, G. D. & Sinclair, J. D. (1988). Localisation by kainic acid lesions of neurones transmitting the carotid chemoreceptor stimulus for respiration in rat. Journal of Physiology 406, 99-114.
  24. Johnson, T. S., Young, J. B. & Landsberg, L. (1983). Sympathoadrenal responses to acute and chronic hypoxia in the rat. Journal of Clinical Investigation 71, 1263-1272.
  25. Kruger, H. & Arias-Stella, J. (1970). The placenta and the newborn infant at high altitudes. American Journal of Obstetrics and Gynecology 106, 586-591.
  26. Lagercrantz, H., Pequignot, J., Pequignot, J. M. & Peyrin, L. (1992). The first breaths of air stimulate noradrenaline turnover in the brain of the newborn rat. Acta Physiologica Scandinavica 144, 433-438.
  27. Lahiri, S. (1984). Respiratory control in Andean and Himalayan high-altitude natives. In High Altitude and Man, ed. West, J. B. & Lahiri, S., pp. 147-162. American Physiological Society, Bethesda, MD, USA.
  28. Lahiri, S., Brody, J. S., Motoyama, E. K. & Velasquez, T. M. (1978). Regulation of breathing in new-borns at high altitude. Journal of Applied Physiology 44, 673-678.
  29. Lindsay, R. S., Lindsay, R. M., Edwards, C. R. & Seckl, J. R. (1996). Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension 27, 1200-1204.
  30. Ling, L., Olson, E. B. Jr, Vidruk, E. H. & Mitchell, G. S. (1996). Attenuation of the hypoxic ventilatory response in adult rats following one month of perinatal hyperoxia. Journal of Physiology 495, 561-571.
  31. Ling, L., Olson, E. B. Jr, Vidruck, E. H. & Mitchell, G. S. (1998). Slow recovery of impaired phrenic responses to hypoxia following perinatal hyperoxia in rats. Journal of Physiology 511, 599-603.
  32. Martin-Body, R. L. (1988). Brain transections demonstrate the central origin of hypoxic ventilatory depression in carotid body- denervated rats. Journal of Physiology 407, 41-52.
  33. Mortola, J. P. & Gautier, H. (1995). Interaction between metabolism and ventilation: Effects of respiratory gases and temperature. In Regulation of Breathing, ed. Dempsey, J. A. & Pack, A. I., pp. 1011-1063. Marcel Dekker, Inc., New York, Basel, Hong Kong.
  34. Mortola, J. P. & Rezzonico, R. (1988). Metabolic and ventilatory rates in newborn kittens during acute hypoxia. Respiration Physiology 73, 55-67.
  35. Mortola, J. P. & Saiki, C. (1996). Ventilatory response to hypoxia in rats: gender differences. Respiration Physiology 106, 21-34.
  36. Nolan, P. C. & Waldrop, T. G. (1996). Ventrolateral medullary neurons show age-dependent depolarizations to hypoxia in vitro. Developmental Brain Research 91, 111-120.
  37. Nyakas, C., Buwalda, B. & Luiten, P. G. (1996). Hypoxia and brain development. Progress in Neurobiology 49, 1-51.
  38. Okubo, S. & Mortola, J. P. (1988). Long-term respiratory effects of neonatal hypoxia in the rat. Journal of Applied Physiology 64, 952-958.
  39. Palkovits, M. & Brownstein, M. J. (1988). Maps and Guide to Microdissection of the Rat Brain. Elsevier, Amsterdam.
  40. Porter, J. C. (1986). Relationship of age, sex, and reproductive status to the quantity of tyrosine hydroxylase in the median eminence and superior cervical ganglion of the rat. Endocrinology 118, 1426-1432.
  41. Raff, H., Shinsako, J., Keil, L. C. & Dallman, M. F. (1983). Vasopressin, ACTH, and corticosteroids during hypercapnia and graded hypoxia in dogs. American Journal of Physiology 244, E453-458.
  42. Roth, R. H., Murrin, L. C. & Walters, J. R. (1976). Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. European Journal of Pharmacology 36, 163-171.
  43. Saiki, C., Matsuoka, T. & Mortola, J. P. (1994). Metabolic- ventilatory interaction in conscious rats: effect of hypoxia and ambient temperature. Journal of Applied Physiology 76, 1594-1599.
  44. Saiki, C. & Mortola, J. P. (1997). Effect of 2,4-dinitrophenol on the hypometabolic response to hypoxia of conscious adult rats. Journal of Applied Physiology 83, 537-542.
  45. Schmitt, P., Soulier, V., P equignot, J. M., Pujol, J. F. & Denavit- Saubi e, M. (1994). Ventilatory acclimatization to chronic hypoxia: relationship to noradrenaline metabolism in the rat solitary complex. Journal of Physiology 477, 331-337.
  46. Seidler, F. J. & Slotkin, T. A. (1990). Effects of acute hypoxia on neonatal rat brain: regionally selective, long-term alterations in catecholamine levels and turnover. Brain Research Bulletin 24, 157-161.
  47. Soulier, V., Cottet-Emard, J. M., Pequignot, J., Hanchin, F., Peyrin, L. & Pequignot, J. M. (1992). Differential effects of long- term hypoxia on norepinephrine turnover in brain stem cell groups. Journal of Applied Physiology 73, 1810-1814.
  48. Soulier, V., Dalmaz, Y., Cottet-Emard, J. M., Lagercrantz, H. & Pequignot, J. M. (1997). Long-term influence of neonatal hypoxia on catecholamine activity in carotid bodies and brainstem cell groups of the rat. Journal of Physiology 498, 523-530.
  49. Waites, B. A., Ackland, G. L., Noble, R. & Hanson, M. A. (1996). Red nucleus lesions abolish the biphasic respiratory response to isocapnic hypoxia in decerebrate young rabbits. Journal of Physiology 495, 217-225.
  50. White, L. D. & Lawson, E. E. (1997). Effects of chronic prenatal hypoxia on tyrosine hydroxylase and phenylethanolamine N_methyltransferase messenger RNA and protein levels in medulla oblongata of postnatal rat. Pediatric Research 42, 455-462.